Asymptotic Fingerprinting Capacity for Non-binary Alphabets

  • Dion Boesten
  • Boris Škorić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6958)


We compute the channel capacity of non-binary fingerprinting under the Marking Assumption, in the limit of large coalition size c. The solution for the binary case was found by Huang and Moulin. They showed that asymptotically, the capacity is 1/(c 2 2ln 2), the interleaving attack is optimal and the arcsine distribution is the optimal bias distribution.

In this paper we prove that the asymptotic capacity for general alphabet size q is (q − 1)/(c 2 2ln q). Our proof technique does not reveal the optimal attack or bias distribution. The fact that the capacity is an increasing function of q shows that there is a real gain in going to non-binary alphabets.


Mutual Information Channel Capacity Attack Strategy Alphabet Size Collusion Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capacity. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 336–345 (2009)Google Scholar
  2. 2.
    Anthapadmanabhan, N.P., Barg, A., Dumer, I.: Fingerprinting capacity under the marking assumption. IEEE Transaction on Information Theory – Special Issue on Information-theoretic Security 54(6), 2678–2689Google Scholar
  3. 3.
    Blayer, O., Tassa, T.: Improved versions of Tardos’ fingerprinting scheme. Designs, Codes and Cryptography 48(1), 79–103 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Charpentier, A., Xie, F., Fontaine, C., Furon, T.: Expectation maximization decoding of Tardos probabilistic fingerprinting code. In: Media Forensics and Security 2009, p. 72540 (2009)Google Scholar
  5. 5.
    Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley Series in Telecommunications. Wiley & Sons, Chichester (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Huang, Y.-W., Moulin, P.: Maximin optimality of the arcsine fingerprinting distribution and the interleaving attack for large coalitions. In: IEEE Workshop on Information Forensics and Security, WIFS (2010)Google Scholar
  7. 7.
    Huang, Y.-W., Moulin, P.: Saddle-point solution of the fingerprinting capacity game under the marking assumption. In: IEEE International Symposium on Information Theory (ISIT) 2009, pp. 2256–2260 (2009)Google Scholar
  8. 8.
    Moulin, P.: Universal fingerprinting: Capacity and random-coding exponents. In: IEEE International Symposium on Information Theory (ISIT) 2008, pp. 220–224 (2008),
  9. 9.
    Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.: An improvement of discrete Tardos fingerprinting codes. Designs, Codes and Cryptography 52(3), 339–362 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimal probabilistic fingerprinting codes using optimal finite random variables related to numerical quadrature. CoRR, abs/cs/0610036 (2006)Google Scholar
  11. 11.
    Simone, A., Škorić, B.: Accusation probabilities in Tardos codes. In: Benelux Workshop on Information and System Security, WISSEC (2010),
  12. 12.
    Sion, M.: On general minimax theorems. Pacific Journal of Mathematics 8(1), 171–176 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC 2003, pp. 116–125 (2003)Google Scholar
  14. 14.
    Škorić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Designs, Codes and Cryptography 46(2), 137–166 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Škorić, B., Katzenbeisser, S., Schaathun, H.G., Celik, M.U.: Tardos fingerprinting codes in the Combined Digit Model. In: IEEE Workshop on Information Forensics and Security (WIFS) 2009, pp. 41–45 (2009)Google Scholar
  16. 16.
    Škorić, B., Vladimirova, T.U., Celik, M.U., Talstra, J.C.: Tardos fingerprinting is better than we thought. IEEE Trans. on Inf. Theory 54(8), 3663–3676 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Xie, F., Furon, T., Fontaine, C.: On-off keying modulation and Tardos fingerprinting. In: MM&Sec 2008, pp. 101–106 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dion Boesten
    • 1
  • Boris Škorić
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations