Advertisement

An Efficient Hardware Countermeasure against Differential Power Analysis Attack

  • Amlan Jyoti Choudhury
  • Beum Su Park
  • Ndibanje Bruce
  • Young Sil Lee
  • Hyotaek Lim
  • Hoon Jae Lee
Part of the Communications in Computer and Information Science book series (CCIS, volume 206)

Abstract

Extensive research on modern cryptography ensures significant mathematical immunity to conventional cryptographic attacks. However, power consumption in cryptographic hardware leak secret information. Differential power analysis attack (DPA) is such a powerful tool to extract the secret key from cryptographic devices. To defend against these DPA attacks, hiding and masking methods are widely used. But these methods increase high area overhead and performance degradation in hardware implementation. In this aspect, this paper proposes a hardware countermeasure circuit, which, is integrated hardware module with the intermediate stages in S-Box. The countermeasure circuit utilizes the dynamic power dissipation characteristics of CMOS and provides countermeasure against DPA attacks.

Keywords

SPA DPA crypto-processor cryptography hamming weight hamming distance CMOS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quisquater, J.J., Rizk, M.: Side Channel attacks. Information-technology promotion agency, Japan technical report (October 2002) http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
  2. 2.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: vol. 1. Springer, Heidelberg (1973); vol. 6697 (2011), 0302-9743 (Print) 1611-3349 (Online)Google Scholar
  4. 4.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Coron, J.-S., Goubin, L.: On Boolean and arithmetic masking against differential power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Coron, J.-S., Kocher, P.C., Naccache, D.: Statistics and secret leakage. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power analysis on smartcards. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 78–92. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–252. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Messerges, T., Dabbish, E., Sloan, R.: Investigation of power analysis attacks on smartcards. In: Usenix Workshop on Smartcard Technology (1999), http://www.usenix.org
  10. 10.
    Liu, P.-C., Chang, H.-C., Lee, C.-Y.: Low Overhead DPA Countermeasure Circuit Based on Ring Oscillators. IEEE Transactions on Circuits and Systems 57(7), 546–550Google Scholar
  11. 11.
    Danis, A.U., Berna, O.: Differential Power Analysis Attack Considering Decoupling Capacitance Effect. In: European Conference on Circuit Theory and Design, ECCTD 2009, pp. 358–362 (October 2009)Google Scholar
  12. 12.
    Semenov, O., Vassighi, A., Sachdev, M., Ali, K., Hawkins, C.F.: Burn-in Temperature Projections for Deep Sub-micron Technologies. In: Proceedings of International Test Conference, ITC 2003, pp. 95–104 (2003)Google Scholar
  13. 13.
    Pramstaller, N., Oswald, E., Mangard, S., Gürkaynak, F.K., Häne, S.: A masked AES ASIC implementation. In: Proc. Austrochip, pp. 77–82 (2004)Google Scholar
  14. 14.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Proc. CHES 2001, pp. 309–318 (2001)Google Scholar
  15. 15.
    Trichina, E., Seta, D.D., Germani, L.: Simplified adaptive multiplicative masking for AES. In: Proc. CHES 2002, pp. 71–85 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Amlan Jyoti Choudhury
    • 1
  • Beum Su Park
    • 1
  • Ndibanje Bruce
    • 1
  • Young Sil Lee
    • 1
  • Hyotaek Lim
    • 2
  • Hoon Jae Lee
    • 2
  1. 1.Department of Ubiquitous IT, Graduate School of GeneralDongseo UniversityBusanSouth Korea
  2. 2.Division of Computer and EngineeringDongseo UniversityBusanSouth Korea

Personalised recommendations