Breast Mass Segmentation in Digital Mammography Using Graph Cuts

  • S. Don
  • Eumin Choi
  • Dugki Min
Part of the Communications in Computer and Information Science book series (CCIS, volume 206)


This paper presents a novel method for the segmentation of breast masses on a mammography. Accurate segmentation is an important task for the correct detection of lesions and its characterization in computer-aided diagnosis systems. Many popular methods exist, of which most of them rely on statistical analysis. Similar to other methods, we propose a graph theoretic image segmentation technique to segment the breast masses automatically. This method consists of two main steps. First we introduce a thresholding method to obtain the rough region of the masses by eliminating all other artifacts. Then, on the basis of this rough region, the graph cuts method was applied to extract the masses from the mammography. The results were evaluated by an expert radiologist and we compared our proposed method with the level set algorithm, which shows the highest success rate. In contrast, we experiment our method on two different databases: DDSM and MiniMIAS. Experimental results show that the proposed method has the potential to detect the masses correctly and is useful for CAD systems.


Segmentation Mammogram Graph Cuts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, R.A., Cokkinides, V., Brawley, O.W.: Cancer Screening in United State, 2010: A review of current American Cancer Society Guidelines and Issues in Cancer Screening. CA Cnacer J. Clin. 60, 99–119 (2010)CrossRefGoogle Scholar
  2. 2.
    Lee, C.-S., Kanmaz, T.J.: Recent Controversies in Cancer Screening Recommendations US Pharm., vol. 35(11), pp. 3–8 (2010) (oncology Supply)Google Scholar
  3. 3.
    Philpotts, L.E.: Can Computer-aided Detection be Detrimental to mammographic Interpretation. Radiology, 17–22 (2009)Google Scholar
  4. 4.
    Haris, K., Efstratiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid Image Segmentation Using watersheds and Fast Region Merging. IEEE Trans. Image Proc. 7(12), 1684–1699 (1998)CrossRefGoogle Scholar
  5. 5.
    Song, E., Jiang, L., Jin, R., Zhang, L., Yuan, Y., Li, Q.: Breast mass Segmentation in Mammography Using Plane Fitting and Dynamic Programming. Academic Radiology 17(7), 826–835 (2009)CrossRefGoogle Scholar
  6. 6.
    Song, E., Xu, S., Xu, X., Zeng, J., Yuan, Y., Hung, C.-C.: Hybrid Segmentation of mass in mammograms Using Template matching and Dynamic Programming. Academic Radiology 17(11), 1224–1414 (2010)CrossRefGoogle Scholar
  7. 7.
    Oliver, A., Freixenet, J., Bosch, A., Raba, D., Zwiggelaar, R.: Automatic classification of breast tissue. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 171–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.: A Concentric Morphology Model for the Detection of masses in mammography. IEEE Trans. on MedicImaging 26(6), 880–889 (2007)Google Scholar
  9. 9.
    Guliato, D., Rangayyan, R.M., Carnielli, W.A., Zuffo, J.A., Desautels, J.L.: Segmentation of Breast Tumors in mammograms using fuzzy sets. Electron. Imaging 12, 369 (2003)CrossRefGoogle Scholar
  10. 10.
    Han, Z., Foo, S.W., Krishnan, S.M., Thug, C.H.: Automated Breast masses Segmentation in Digitized mammograms. In: IEEE International Workshop in Biomedical Circuits and Systems, pp. S2, 2–4 (2004)Google Scholar
  11. 11.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  12. 12.
    Petrick, N., Chan, H.P., Sahiner, B.: Automated Detection of Breast masses on Digital mammograms Using Adaptive density- weighted contrast enhancement Filtering. In: Proc. SPIE, pp. 590–597 (1995)Google Scholar
  13. 13.
    Hong, B., Brady, M.: A topographic representation for mammogram segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 730–737. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Shi, J., Sahiner, B., Chan, H.-P., Ge, J., Hadjiiski, L., Helvie, M.A., Nees, A., Wu, Y.-T., Wei, J., Zhou, C., Zhang, Y., Cui, J.: Characterization of Mammographic masses based on level set segmentation with new Image features and patient Information. Med. Phys. 35(1), 280–290 (2008)CrossRefGoogle Scholar
  15. 15.
    Timp, S., Karssemeijer, N.: A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography. Med. Phys., 958–971 (2004)Google Scholar
  16. 16.
    Davies, E.R.: Machine Vision: Theory, Algorithm, Practicalities. Elsevier, Amsterdam (2005)Google Scholar
  17. 17.
    Bhattacharya, P.: Connected Component Labeling for Binary Images on a reconfigurable mesh architecture. Journal of Systems Architecture, 309–313 (1996)Google Scholar
  18. 18.
    Mudigonda, N.R., Rangayyan, R.M., Leo Desautels, J.E.: Detection of breast masses in mammograms by density slicing and texture flow field analysis. IEEE Trans. on Medic. Imag. 20(12), 1215–1227 (2001)CrossRefGoogle Scholar
  19. 19.
    Boykov, Y.Y., Marie-Pierre Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proc. ICCV, pp. 105–112 (2001)Google Scholar
  20. 20.
    Boykov, Y.Y., Kolmogorov, V.: An experimental comparison of Min-Cut/Max-Flow algorithm for energy minimization in vision. IEEE Trans. pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Xu, S., Liu, H., Song, E.: Marker Controlled watershed for lesion segmentation in mammograms. J. Digital Imaging (2011) (published online) Google Scholar
  22. 22.
    Jeffreys, M., Warren, R., Davey Smith, G., Gunnell, D.: Breast Density: agreement of measures from film and digital image. The British Journal of Radiology 76, 561–563 (2003)CrossRefGoogle Scholar
  23. 23.
    Suckling, J., Boggis, C.R.M., Stamatakis, E., Taylor, P.: The Mammographic Image Analysis Society Digital Mammogram Database. International Congress Series 1069, 375–378 (1994)Google Scholar
  24. 24.
    Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.J.: The Digital database for screening mammography. In: Proc. Int. Workshop Dig. Mammography, pp. 212–218 (2000)Google Scholar
  25. 25.
    Grady, L., Schwartz, E.L.: Isoperimetric Graph Partitioning for Image Segmentation. IEEE Trans. Patten Anal. Mach. Intell. 28(3), 469–475 (2006)CrossRefGoogle Scholar
  26. 26.
    Chu, Y., Li, L.: Graph-based region growing for mass segmentation in digital mammography. Medical Imaging 4684, 1690–1697 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. Don
    • 1
  • Eumin Choi
    • 2
  • Dugki Min
    • 1
  1. 1.School of Computer Science and EngineeringKonkuk UniversitySeoulKorea
  2. 2.School of Business ITKookmin UniversityKorea

Personalised recommendations