Skip to main content

Model Order Reduction of Single Input Single Output Systems Using Artificial Bee Colony Optimization Algorithm

  • Chapter
Nature Inspired Cooperative Strategies for Optimization (NICSO 2011)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 387))

Abstract

In many practical situations a fairly complex and high order model is obtained in modeling different components/subsystems of a system. The analysis of such high order system is not only tedious but also cost ineffective for online implementation. Therefore, deriving reduced order models of high-order linear time invariant systems attracted researchers to develop new methods for this purpose. Artificial Bee Colony (ABC) optimization algorithm is an effective and recent addition to swarm based optimization algorithm for optimization in continuous search space. In this paper, Artificial Bee Colony optimization algorithm is applied to solve Model Order Reduction of Single Input Single Output (SISO) Systems. The results obtained by ABC are compared with two most popular deterministic approaches namely Pade and Routh approximation method. The results reported are encouraging and shows that this technique is comparable in quality with existing conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mittal, A.K., Prasad, R., Sharma, S.P.: Reduction of linear dynamic systems using an error minimization technique. Journal of Institution of Engineers India, IE(I) Journal EL 84, 201–206 (2004)

    Google Scholar 

  2. Aguirre, L.: The least squares padé method for model reduction. International Journal of Systems Science 23(10), 1559–1570 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C., Shieh, L.: A novel approach to linear model simplification. International Journal of Control 8(6), 561–570 (1968)

    Article  Google Scholar 

  4. Chen, T., Chang, C., Han, K.: Reduction of transfer functions by the stability-equation method. Journal of the Franklin Institute 308(4), 389–404 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davison, J.E.: A method for simplifying linear dynamic systems. IEEE Trans. Automatic Control AC-11(1), 93–101 (1966)

    Article  MathSciNet  Google Scholar 

  6. Gopal, M.: Control systems: principles and design. Tata McGraw-Hill, New York (2002)

    Google Scholar 

  7. Gustafson, R.D.: A paper and pencil control system design. Trans. ASME J. Basic Engg., 329–336 (1966)

    Google Scholar 

  8. Hickin, J., Sinha, N.: Canonical forms for aggregated models. International Journal of Control 27(3), 473–485 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hickin, J., Sinha, N.K.: Reduction of linear system by canonical forms. Electronics Letters 12(21), 551–553 (1976)

    Article  MathSciNet  Google Scholar 

  10. Hu, X.: Ff-padé method of model reduction in frequency domain. IEEE Transactions on Automatic Control 32(3), 243–246 (1987)

    Article  MATH  Google Scholar 

  11. Hutton, M., Friedland, B.: Routh approximations for reducing order of linear, time-invariant systems. IEEE Transactions on Automatic Control 20(3), 329–337 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hwang, C.: Mixed method of routh and ise criterion approaches for reduced-order modeling of continuous-time systems. Journal of dynamic systems, measurement, and control 106, 353 (1984)

    Article  MATH  Google Scholar 

  13. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06, Erciyes Univ Press, Erciyes (2005)

    Google Scholar 

  14. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 214(1), 108–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krishnamurthy, V., Seshadri, V.: Model reduction using the routh stability criterion. IEEE Transactions on Automatic Control 23(4), 729–731 (1978)

    Article  Google Scholar 

  16. Lamba, S., Gorez, R., Bandyopadhyay, B.: New reduction technique by step error minimization for multivariable systems. International Journal of Systems Science 19(6), 999–1009 (1988)

    MathSciNet  Google Scholar 

  17. Lucas, T.: Factor division: A useful algorithm in model reduction. IEE Proceedings D, IET, Control Theory and Applications 130, 362–364 (1983)

    Article  MATH  Google Scholar 

  18. Lucas, T.: Continued-fraction expansion about two or more points: a flexible approach to linear system reduction. Journal of the Franklin Institute 321(1), 49–60 (1986)

    Article  MATH  Google Scholar 

  19. Luus, R.: Optimal reduction of linear systems. Journal of the Franklin Institute 336(3), 523–532 (1999)

    Article  Google Scholar 

  20. Ouyang, M., Liaw, C.M., Pan, C.T.: Model reduction by power decomposition and frequency response matching. IEEE Trans. Auto Control AC 32, 59–62 (1987)

    Article  MATH  Google Scholar 

  21. Marshall, S.: Comments on viability of methods for generating stable reduced order models. IEEE Transactions on Automatic Control 28(5), 630–631 (1983)

    Article  Google Scholar 

  22. Mishra, R., Wilson, D.: A new algorithm for optimal reduction of multivariable systems. International Journal of Control 31(3), 443–466 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mukherjee, S., Mishra, R.: Order reduction of linear systems using an error minimization technique. Journal of the Franklin Institute 323(1), 23–32 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mukherjee, S., Mittal, R.: Order reduction of linear discrete systems using a genetic algorithm. Applied Mathematical Modelling 29(6), 565–578 (2005)

    Article  MATH  Google Scholar 

  25. Mukherjee, S., et al.: Model order reduction using response-matching technique. Journal of the Franklin Institute 342(5), 503–519 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gutman, P.O., Mannerfelt, C.F., Molander, P.: Contributions to the model reduction problem. IEEE Trans Automatic Control AC-27(2), 454–455 (1982)

    Article  Google Scholar 

  27. Pade, H.: Sur la representation approaches dune function par des fraction rationelles. Annales Scientifiques de I’Ecole Normale Supieure 9, 1–93 (1892)

    MathSciNet  Google Scholar 

  28. Pal, J.: Stable reduced-order padã â© approximants using the routh-hurwitz array. Electronics letters 15(8), 225–226 (1979)

    Article  Google Scholar 

  29. Pal, J.: An algorithmic method for the simplification of linear dynamic scalar systems. International Journal of Control 43(1), 257–269 (1986)

    Article  MATH  Google Scholar 

  30. Paynter, H.M., Takahashi, Y.: A new method of evaluation dynamic response of counter flow and parallel flow heat exchangers. Trans. ASME J. Dynam. Syst. Meas. Control 27, 749–753 (1956)

    Google Scholar 

  31. Prasad, R., Pal, J.: Stable reduction of linear systems by continued fractions. Journal-Institution of Engineers India Part El Electrical Engineering Division 72, 113–113 (1991)

    Google Scholar 

  32. Sanathanan Stanley, B., et al.: A comprehensive methodology for siso system order reduction. Journal of the Franklin Institute 323(1), 1–21 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shamash, Y.: Linear system reduction using pade approximation to allow retention of dominant modes. International Journal of Control 21(2), 257–272 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shoji, K., et al.: Model reduction for a class of linear dynamic systems. Journal of the Franklin Institute 319(6), 549–558 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Singh, N.: Reduced order modeling and controller design. PhD thesis, Indian Institute of Technology Roorkee, India (2007)

    Google Scholar 

  36. Sinha, N., Bereznai, G.: Optimum approximation of high-order systems by low-order models. International Journal of Control 14(5), 951–959 (1971)

    Article  MATH  Google Scholar 

  37. Sinha, N., Pille, W.: A new method for reduction of dynamic systems. International Journal of Control 14(1), 111–118 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sivanandam, S., Deepa, S.: A genetic algorithm and particle swarm optimization approach for lower order modelling of linear time invariant discrete systems. In: ICCIMA, pp. 443–447. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  39. Vilbe, P., Calvez, L.: On order reduction of linear systems using an error minimization technique. Journal of the Franklin Institute 327(3), 513–514 (1990)

    Article  MATH  Google Scholar 

  40. Yang, S., Luus, R.: Optimisation in linear system reduction. Electronics Letters 19(16), 635–637 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bansal, J.C., Sharma, H., Arya, K.V. (2011). Model Order Reduction of Single Input Single Output Systems Using Artificial Bee Colony Optimization Algorithm. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24094-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24094-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24093-5

  • Online ISBN: 978-3-642-24094-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics