Advertisement

Automatic Template Labeling in Extensible Multiagent Biometric Systems

  • Maria De Marsico
  • Michele Nappi
  • Daniel Riccio
  • Genny Tortora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)

Abstract

Many works in literature have demonstrated the superiority of multibiometric systems compared to single-biometrics ones, in terms of both accuracy and robustness. Most current multibiometric systems implement a static architecture, which does not change in time. However, the ability to progressively add more modules, either to process more biometrics or to exploit additional algorithms, might contribute to further enhance recognition performance. The addition of a new module (agent) to an already fully operational multiagent system usually requires its preliminary setup and training. In particular, it must be provided with a brand-new gallery, whose templates are suitably labeled according to the represented identities; alternatively, an existing database of templates, formerly built according to the suited feature extraction procedure, might be updated to include better quality items. It would be of paramount importance if the new agent can “inherit” the “experience that was already acquired by the other agents, including the creation of its gallery without having to undergo a full enrolling phase in its turn. We present here an algorithm to align a new module to the already existing ones in an automatic and unsupervised way. Experimental results show that our algorithm is effective both when the new database must be created from scratch (sample labeling), as well as when it is pre-existing and must be updated (sample updating). The latter operation can also be iteratively performed in running modules to dynamically update their galleries. In particular, we present here results achieved for face recognition.

Keywords

Multibiometric system template labeling unsupervised learning template updating 

References

  1. 1.
    De Marsico, M., Nappi, M., Riccio, D., Tortora, G.: A multiexpert collaborative biometric system for people identification. JVLC 20(2), 91–100 (2009)Google Scholar
  2. 2.
    De Marsico, M., Nappi, M., Riccio, D.: FARO: FAce Recognition Against Occlusions and Expression Variations. IEEE Trans. On Systems, Man and Cybernetics–Part A 40(1), 121–132 (2010)CrossRefGoogle Scholar
  3. 3.
    De Marsico, M., Nappi, M., Riccio, D., Tortora, G.: NABS: Novel Approaches for Biometric Systems. Accepted for Publication. In: IEEE Trans. on Systems, Man, and Cybernetics—Part C (available online)Google Scholar
  4. 4.
    Fatukasi, O., Kittler, J., Poh, N.: Estimation of Missing Values in Multimodal Biometric Fusion. In: 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS 2008, Arlington, VA, pp. 1–6 (2008)Google Scholar
  5. 5.
    Martinez, A.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. on PAMI 24(6), 748–763 (2002)CrossRefGoogle Scholar
  6. 6.
    Rattani, A., Freni, B., Marcialis, G.L., Roli, F.: Template Update Methods in Adaptive Biometric Systems: A Critical Review. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 847–856. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Roli, F., Didaci, L., Marcialis, G.: Adaptive Biometric Systems That Can Improve with Use. In: Ratha, N.K., Govindaraju, V. (eds.) Advances in Biometrics - Sensors, Algorithms and Systems. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Uludag, U., Ross, A., Jain, A.: Biometric template selection and update: a case study in fingerprints. Pattern Recognition 37, 1533–1542 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maria De Marsico
    • 2
  • Michele Nappi
    • 1
  • Daniel Riccio
    • 1
  • Genny Tortora
    • 1
  1. 1.Biometric and Image Processing LaboratoryUniversity of SalernoFiscianoItaly
  2. 2.Department of Computer ScienceSapienza University of RomeRomeItaly

Personalised recommendations