Automatic Segmentation of Digital Orthopantomograms for Forensic Human Identification

  • Dariusz Frejlichowski
  • Robert Wanat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)

Abstract

Dental radiographic images are one of the most popular biometrics used in the process of forensic human identification. This led to the creation of the Automatic Dental Identification System with the goal of decreasing the time it takes to perform a single search in a large database of dental records. A fully automated system identifying people based on dental X-ray images requires a prior segmentation of the radiogram into sections containing a single tooth. In this paper, a novel method for such segmentation is presented, developed for the dental radiographic images depicting the full dentition — pantomograms. The described method utilizes the locations of areas between necks of teeth in order to determine the separating lines and does not depend on the articulation of gaps between adjacent teeth, thus improving the results achieved in the situation of severe occlusions.

Keywords

image segmentation dental pantomography dental human identification ADIS forensic identification 

References

  1. 1.
    Bowers, M.C.: Forensic Dental Evidence. Elsevier, Amsterdam (2004)Google Scholar
  2. 2.
    Lee, S., et al.: The Diversity of Dental Patterns in Orthopantomography and its Significance in Human Identification. Journal of Forensic Science 49(4), 784–786 (2004)CrossRefGoogle Scholar
  3. 3.
    Nassar, D., Ammar, H.H.: A Prototype Automated Dental Identification System (ADIS). In: Proceedings of the 2003 Annual National Conference on Digital Government Research, pp. 1–4 (2003)Google Scholar
  4. 4.
    Abdel-Mottaleb, M., et al.: Challenges of Developing an Automated Dental Identification System. In: IEEE Mid-West Symposium for Circuits and Systems, Cairo, Egypt, pp. 411–414 (2003)Google Scholar
  5. 5.
    Fahmy, G., Nassar, D.E., Haj-Said, E., Chen, H., Nomir, O., Zhou, J., Howell, R., Ammar, H.H., Abdel-Mottaleb, M., Jain, A.K.: Towards an Automated Dental Identification System (ADIS). In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 789–796. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Jain, A.K., Chen, H.: Matching of Dental X-ray Images for Human Identification. Pattern Recognition 37(7), 1519–1532 (2004)CrossRefGoogle Scholar
  7. 7.
    Said, A., et al.: Dental X-ray Image Segmentation. In: SPIE Technologies for Homeland Security and Law Enforcement Conference (2001)Google Scholar
  8. 8.
    Zhou, J., Abdel-Mottaleb, M.: A Content-based System for Human Identification Based on Bitewing Dental X-ray Images. Pattern Recognition 38(11), 2132–2142 (2005)CrossRefGoogle Scholar
  9. 9.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefMATHGoogle Scholar
  10. 10.
    Frejlichowski, D., Wanat, R.: Application of the Laplacian Pyramid Decomposition to the Enhancement of Digital Dental Radiographic Images for the Automatic Person Identification. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part II. LNCS, vol. 6112, pp. 151–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dariusz Frejlichowski
    • 1
  • Robert Wanat
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations