Using Geometric Constraints to Solve the Point Correspondence Problem in Fringe Projection Based 3D Measuring Systems

  • Christian Bräuer-Burchardt
  • Christoph Munkelt
  • Matthias Heinze
  • Peter Kühmstedt
  • Gunther Notni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)


A new method for fringe projection based 3D stereo scanners is introduced which realizes point correspondence finding and subsequent unwrapping of phase images without binary codes. The novelty of the method is the combination of geometric constraints between the three optical sensor components together with the estimated measurement accuracy of the system in order to achieve unique point correspondences. Considerable fringe code reduction obtained by use of geometric constraints and Gray code omission leads to a speed-up of the image sequence acquisition time. This opens the possibility to design moving sensors and to measure moving objects.


fringe projection phase unwrapping optical measurement systems measuring accuracy epipolar geometry 


  1. 1.
    Battle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. PR 31(7), 963–982 (1998)Google Scholar
  2. 2.
    Li, E.B., Peng, X., Xi, J., Chicaro, J.F., Yao, J.Q., Zhang, D.W.: Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry. Optics Express 13, 1561–1569 (2005)CrossRefGoogle Scholar
  3. 3.
    Zhang, H., Lalor, M.J., Burton, D.R.: Spatiotemporal phase unwrapping for the measurement of discontinuous objects in dynamic fringe-projection phase-shifting profilometry. Applied Optics 38, 3534–3541 (1999)CrossRefGoogle Scholar
  4. 4.
    Sansoni, G., Carocci, M., Rodella, R.: Three-dimensional vision based on a combination of Gray-code and phase-shift light projection: Analysis and compensation of the systematic errors. Applied Optics 38(31), 6565–6573 (1999)CrossRefGoogle Scholar
  5. 5.
    Zhang, S., Yau, S.T.: High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method. Optics Express 14(7), 2644–2649 (2006)CrossRefGoogle Scholar
  6. 6.
    Ishiyama, R., Sakamotom, S., Tajima, J., Okatani, T., Deguchi, K.: Absolute phase measurements using geometric constraints between multiple cameras and projectors. Applied Optics 46(17), 3528–3538 (2007)CrossRefGoogle Scholar
  7. 7.
    Ishiyama, R., Okatani, T., Deguchi, K.: Precise 3-d measurement using uncalibrated pattern projection. In: Proc. IEEE Int. Conf. on Image Proc., vol. 1, pp. 225–228 (2007)Google Scholar
  8. 8.
    Young, M., Beeson, E., Davis, J., Rusinkiewicz, S., Ramamoorthi, R.: Viewpoint-coded structured light. In: Proc. CVPR, pp. 1–8 (2007)Google Scholar
  9. 9.
    Li, Z., Shi, Y., Wang, C.: Real-time complex object 3D measurement. In: Proc. ICCMS, pp. 191–194 (2009)Google Scholar
  10. 10.
    Bräuer-Burchardt, C., Munkelt, C., Heinze, M., Kühmstedt, P., Notni, G.: Phase unwrapping in fringe projection systems using epipolar geometry. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 422–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bräuer-Burchardt, C., Munkelt, C., Heinze, M., Kühmstedt, P., Notni, G.: Fringe code reduction for 3D measurement systems using epipolar geometry. In: Proc. PCVIA, ISPRS, vol. XXXVIII, Part 3A, pp. 192–197 (2010)Google Scholar
  12. 12.
    Kühmstedt, P., Heinze, M., Himmelreich, M., Bräuer-Burchardt, C., Notni, G.: Optical 3D sensor for large objects in industrial application. In: Proc. SPIE, vol. 5856, pp. 118–127 (2005)Google Scholar
  13. 13.
    Kühmstedt, P., Munkelt, C., Heinze, M., Bräuer-Burchardt, C., Notni, G.: 3D shape measurement with phase correlation based fringe projection. In: Proc. SPIE, vol. 6616, 66160B (2007)Google Scholar
  14. 14.
    Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close range photogrammetry. Wiley Whittles Publishing, Chichester (2006)Google Scholar
  15. 15.
    Schreiber, W., Notni, G.: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique. Opt. Eng. 39, 159–169 (2000)CrossRefGoogle Scholar
  16. 16.
    Bräuer-Burchardt, C., Heinze, M., Munkelt, C., Kühmstedt, P., Notni, G.: Distance dependent lens distortion variation in 3D measuring systems using fringe projection. In: Proc. 17th BMVC, pp. 327–336 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Bräuer-Burchardt
    • 1
  • Christoph Munkelt
    • 1
  • Matthias Heinze
    • 1
  • Peter Kühmstedt
    • 1
  • Gunther Notni
    • 1
  1. 1.Fraunhofer Institute Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations