An Experimental Comparison of Different Methods for Combining Biometric Identification Systems

  • Emanuela Marasco
  • Carlo Sansone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)


Several works in the recent literature on biometrics demonstrate the efficiency of the multimodal fusion to enhance performance and reliability of the automatic recognition. In this paper, we experimentally compare the behavior of different rules for integrating different biometric identification systems. We investigated how the benefits of the fusion change by varying the set of the fused modalities, the adopted fusion scheme and the performance of the individual matchers. The experiments were carried out on two multimodal databases, using face and fingerprint. We considered trained and fixed fusion methods at score, rank and decision level.


Fusion Rule Fusion Scheme Modality Matcher Borda Count Biometric Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recognition Letters 24, 2115–2125 (2003)CrossRefGoogle Scholar
  2. 2.
    Poh, N., Kittler, J.: Multimodal information fusion. Multimodal Signal Processing: Theory And Applications For Human-Computer Interaction (2009)Google Scholar
  3. 3.
    Sanchez, U., Kittler, J.: Fusion of talking face biometric modalities for personal identity verification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. V-V (2006)Google Scholar
  4. 4.
    Grother, P., Tabassi, E.: Performance of biometric quality measures. IEEE Transaction On Pattern Analysis and Machine Intelligence 29(4), 531–543 (2007)CrossRefGoogle Scholar
  5. 5.
    Kittler, J., Poh, N., Fatukasi, O., Messer, K., Kryszczuk, K., Richiardi, J., Dry-gajlo, A.: Quality dependent fusion of intramodal and multimodal biometric experts. In: SPIE Biometric Technology for Human Identification IV, vol. 6539 (2007)Google Scholar
  6. 6.
    Roli, F., Kittler, J., Fumera, G., Muntoni, D.: An experimental comparison of classifier fusion rules for multimodal personal identity verification systems. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 325–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Nandakumar, K., Chen, Y., Dass, S., Jain, A.: Likelihood ratio-based biometric score fusion. IEEE Transaction on Pattern Analysis and Machine Intelligence 30(2), 342–347 (2008)CrossRefGoogle Scholar
  8. 8.
    Ross, A., Nandakumar, K., Jain, A.: Handbook of MultiBiometrics. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal bio-metric systems. Pattern Recognition 38(12), 2270–2285 (2005)CrossRefGoogle Scholar
  10. 10.
    Poh, N.: Multi-System Biometric Authentication: Optimal Fusion And User-Specific Information. Ecole Polytechnique Fédéral de Lausanne (2006)Google Scholar
  11. 11.
    Vatsa, M., Singh, R., Noore, A., Ross, A.: On the dynamic selection of biomet-ric fusion algorithms. IEEE Transaction on Information Forensics and Security 5(3), 470–479 (2010)CrossRefGoogle Scholar
  12. 12.
    Abaza, A., Ross, A.: Quality-based rank level fusion in biometrics. In: Third IEEE International Conference on Biometrics: Theory Applications and Systems (September 2009)Google Scholar
  13. 13.
    Marasco, E., Ross, A., Sansone, C.: Predicting identification errors in a multibio-metric system based on ranks and scores. In: Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (September 2010)Google Scholar
  14. 14.
    Kuncheva, L.I.: Combining Pattern Classifiers Method and Algorithms. Wiley, Chichester (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Marcialis, G.L., Roli, F.: Serial fusion of fingerprint and face matchers. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 151–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Crihalmeanu, S., Ross, A., Schuckers, S., Hornak, L.: A protocol for multibiomet-ric data acquisition, storage and dissemination. Technical Report. West Virginia University (2007)Google Scholar
  17. 17.
    Poh, N., Bourlai, T., Kittler, J.: A multimodal biometric test bed for quality-dependent, cost-sensitive and client-specific score-level fusion algorithms. Pattern Recognition 43, 1094–1105 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emanuela Marasco
    • 1
  • Carlo Sansone
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations