Pre-emptive Camera Activation for Video-Surveillance HCI

  • Niki Martinel
  • Christian Micheloni
  • Claudio Piciarelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)


Video analytics has become a very important topic in computer vision. Many applications and different approaches have been proposed in different fields. This paper introduces a new information visualisation technique that aims to reduce the mental effort of security operators. A video analytics and a HCI module have been developed to reach the desired goal. Video analysis are exploited to compute possible trajectories used by the HCI module to pre-emptively activate cameras that will be probably interested by the motion of detected objects. The visualisation of most interesting views is provided to reduce the mental effort of human operators and allow them to follow the object of interest. Usability tests show the efficiency of the proposed solution.


Video Stream Priority Queue Camera View Average Execution Time Video Surveillance System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bottoni, P., De Marsico, M., Levialdi, S., Ottieri, G., Pierro, M., Quaresima, D.: A dynamic environment for video surveillance. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009, Part 2. LNCS, vol. 5727, pp. 892–895. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Chittaro, L.: Visualizing information on mobile devices. IEEE Computer 39(3), 34–39 (2006)CrossRefGoogle Scholar
  3. 3.
    Colineau, N., Phalip, J., Lampert, A.: The delivery of multimedia presentations in a graphical user interface environment. In: 11th International Conference on Intelligent User Interface, Sydney, Australia, pp. 279–281 (February 2006)Google Scholar
  4. 4.
    Foresti, G., Micheloni, C., Piciarelli, C.: Detecting moving people in video streams. Pattern Recognition Letters 26, 2232–2243 (2005)CrossRefGoogle Scholar
  5. 5.
    Girgensohn, A., Kimber, D., Vaughan, J., Yang, T., Shipman, F., Turner, T., Rieffel, E., Wilcox, L., Chen, F., Dunnigan, T.: Dots: Support for effective video surveillance. In: Proceedings of the 15th International Conference on Multimedia, Augsburg, Germany, pp. 423–432 (September 2007)Google Scholar
  6. 6.
    Iannizzotto, G., Costanzo, C., Rosa, F.L., Lanzafame, P.: A multimodal perceptual user interface for video-surveillance environments. In: 7th International Conference on Multimodal Interfaces, pp. 45–52 (October 2005) Google Scholar
  7. 7.
    Lee, L., Romando, R., Stein, G.: Monitoring activities from multiple video streams: Establishing a common coordinate frame. IEEE Transactions on Pattern Analysis And Machine Intelligence 22(8), 758–767 (2000)CrossRefGoogle Scholar
  8. 8.
    Micheloni, C., Rinner, B., Foresti, G.L.: Video analysis in pan-tilt-zoom camera networks. IEEE Signal Processing Magazine 27(5), 78–90 (2010)CrossRefGoogle Scholar
  9. 9.
    Morris, B.T., Trivedi, M.M.: Contextual activity visualization from long-term video observations. IEEE Intelligent Systems 25(3), 50–62 (2010)CrossRefGoogle Scholar
  10. 10.
    Nielsen, J.: Usability inspection methods. In: Conference Companion on Human Factors in Computing Systems, CHI 1994, pp. 413–414. ACM, New York (1994)Google Scholar
  11. 11.
    Piciarelli, C., Foresti, G.: Online trajectory clustering for anomalous event detection. Pattern Recognition Letters 27, 1835–1842 (2006)CrossRefGoogle Scholar
  12. 12.
    Qureshi, F.Z., Terzopoulos, D.: Planning ahead for ptz camera assignment and handoff. In: Third ACM/IEEE International Conference on Distributed Smart Cameras 2009, Como, Italy, pp. 1–8 (August-September 2009)Google Scholar
  13. 13.
    Rieffel, E.G., Girgensohn, A., Kimber, D., Chen, T., Liu, Q.: Geometric tools for multicamera surveillance systems. In: First ACM/IEEE International Conference on Distributed Smart Cameras, pp. 132–139. ACM/IEEE (2007)Google Scholar
  14. 14.
    Spence, R.: Information Visualization. Addison Wesley, Harlow (2000)Google Scholar
  15. 15.
    Wharton, C., Rieman, J., Lewis, C., Polson, P.: Usability Inspection Methods, 1st edn., ch. 5, pp. 105–140. Wiley, Chichester (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Niki Martinel
    • 1
  • Christian Micheloni
    • 1
  • Claudio Piciarelli
    • 1
  1. 1.Università degli Studi di UdineItaly

Personalised recommendations