Face Analysis Using Curve Edge Maps

  • Francis Deboeverie
  • Peter Veelaert
  • Wilfried Philips
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)

Abstract

This paper proposes an automatic and real-time system for face analysis, usable in visual communication applications. In this approach, faces are represented with Curve Edge Maps, which are collections of polynomial segments with a convex region. The segments are extracted from edge pixels using an adaptive incremental linear-time fitting algorithm, which is based on constructive polynomial fitting. The face analysis system considers face tracking, face recognition and facial feature detection, using Curve Edge Maps driven by histograms of intensities and histograms of relative positions. When applied to different face databases and video sequences, the average face recognition rate is 95.51%, the average facial feature detection rate is 91.92% and the accuracy in location of the facial features is 2.18% in terms of the size of the face, which is comparable with or better than the results in literature. However, our method has the advantages of simplicity, real-time performance and extensibility to the different aspects of face analysis, such as recognition of facial expressions and talking.

Keywords

geometric features shape modeling shape matching face recognition face tracking facial feature detection 

References

  1. 1.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Training Models of Shape from Sets of Examples. In: Proc. British Machine Vision Conference, pp. 9–18 (1992)Google Scholar
  2. 2.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  3. 3.
    Liu, X.: Generic face alignment using boosted appearance model. In: Proc. IEEE Computer Vision and Pattern Recognition, pp. 1079–1088 (2007)Google Scholar
  4. 4.
    Liu, X.: Discriminative Face Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 1941–1954 (2009)CrossRefGoogle Scholar
  5. 5.
    Liang, L., Xiao, R., Wen, F., Sun, J.: Face alignment via component-based discriminative search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 72–85. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Deboeverie, F., Veelaert, P., Teelen, K., Philips, W.: Face Recognition Using Parabola Edge Map. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 994–1005. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2001)CrossRefGoogle Scholar
  8. 8.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  9. 9.
    Deboeverie, F., Teelen, K., Veelaert, P., Philips, W.: Vehicle Tracking Using Geometric Features. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 506–515. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Georgia Institute of Technology, Georgia Tech Face Database, http://www.anefian.com/face_reco.htm
  11. 11.
    AT&T Laboratories, Cambridge, The Database of Faces, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
  12. 12.
    University of Bern, Bern, Switzerland, Bern University Face Database, ftp://iamftp.unibe.ch/pub/ImagesFaceImages/
  13. 13.
    Martinez, A.M., Benavente, R.: The AR Face Database, CVC Technical Report #24 (1998)Google Scholar
  14. 14.
    University of Yale, Bern, Switzerland, Yale University Face Database, http://cvc.yale.edu/projects/yalefaces/yalefaces.html
  15. 15.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Cristinacce, D., Cootes, T.F.: Automatic Feature Localisation with Constrained Local Models. Pattern Recognition 41(10), 3054–3067 (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Ding, L., Martinez, A.M.: Features versus Context: An Approach for Precise and Detailed Detection and Delineation of Faces and Facial Features. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 2022–2038 (2010)CrossRefGoogle Scholar
  18. 18.
    Deboeverie, F., Teelen, K., Veelaert, P., Philips, W.: Adaptive Constructive Polynomial Fitting. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part I. LNCS, vol. 6474, pp. 173–184. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  20. 20.
    Karande, K.J., Talbar, S.N.: Independent Component Analysis of Edge Information for Face Recognition. International Journal of Image Processing 3(3), 120–130 (2009)Google Scholar
  21. 21.
    Veelaert, P., Teelen, K.: Fast polynomial segmentation of digitized curves. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 482–493. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Cha, S.-H., Srihari, S.N.: On measuring the distance between histograms. Pattern Recognition 35(6), 1355–1370 (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francis Deboeverie
    • 1
  • Peter Veelaert
    • 2
  • Wilfried Philips
    • 1
  1. 1.Image Processing and Interpretation/IBBTGhent UniversityGhentBelgium
  2. 2.Engineering SciencesUniversity College GhentGhentBelgium

Personalised recommendations