Advertisement

Genetic Normalized Convolution

  • Giulia Albanese
  • Marco Cipolla
  • Cesare Valenti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

Normalized convolution techniques operate on very few samples of a given digital signal and add missing information, trough spatial interpolation. From a practical viewpoint, they make use of data really available and approximate the assumed values of the missing information. The quality of the final result is generally better than that obtained by traditional filling methods as, for example, bilinear or bicubic interpolations. Usually, the position of the samples is assumed to be random and due to transmission errors of the signal. Vice versa, we want to apply normalized convolution to compress data. In this case, we need to arrange a higher density of samples in proximity of zones which contain details, with respect to less significant, uniform parts of the image. This paper describes an evolutionary approach to evaluate the position of certain samples, in order to reconstruct better images, according to a subjective definition of visual quality. An extensive analysis on real data was carried out to verify the correctness of the proposed methodology.

Keywords

Genetic Algorithm Radial Symmetry Texture Scene Phase Congruency Active Vision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Knutsson, H., Westin, C.: Normalised and differential convolution. In: IEEE Proc. CVPR on Computer Society Conf., vol. 15-17, pp. 515–523 (1993)Google Scholar
  2. 2.
    Pham, T.Q., van Vliet, L.J.: Normalized averaging using adaptive applicability functions with applications in image reconstruction from sparsely and randomly sampled data. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 485–492. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Pham, T.Q., van Vliet, L.J., Schutte, K.: Robust Fusion of Irregularly Sampled Data using Adaptive Normalized Convolution. Journal Applied Signal Processing (2006)Google Scholar
  4. 4.
    Kim, E.Y., Jung, K.: Object Detection and Removal Using Genetic Algorithms. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 411–421. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Di Gesù, V., Valenti, C.: Detection of regions of interest via the Pyramid Discrete Symmetry Transform. In: Proceedings of International Workshop on Theoretical Foundations of Computer Vision (1997)Google Scholar
  6. 6.
    Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context Free Attentional Operators: The Generalized Symmetry Transform. Int’l J. Computer Vision 14, 119–130 (1995)CrossRefGoogle Scholar
  7. 7.
    Loy, G., Zelinsky, A.: Fast Radial Symmetry for Detecting Points of Interest. IEEE Trans. on Pattern Analysis and Machine intelligence 25(8) (2003)Google Scholar
  8. 8.
    Kovesi, P.: Phase Congruency Detects Corners and Edges. In: The Australian Pattern Recognition Society Conference: DICTA Sydney 2003, pp. 309–318 (2003)Google Scholar
  9. 9.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  10. 10.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal on Computer Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar
  12. 12.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, Z., Bovik, A.C., Sheikn, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giulia Albanese
    • 1
  • Marco Cipolla
    • 2
  • Cesare Valenti
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di PalermoItaly

Personalised recommendations