Improved Content-Based Watermarking Using Scale-Invariant Feature Points

  • Na Li
  • Edwin Hancock
  • Xiaoshi Zheng
  • Lin Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

For most HVS(Human Visual System) perceptual models, the JND(Just Noticeable Difference) values in highly-textured image regions have little difference with those in edge areas. This is not consistent with the characteristics of human vision. In this paper, an improved method is introduced to give a better content-based perceptual mask than traditional ones using the arrangement of scale-invariant feature points. It could decrease the JND values in edge areas of those traditional masks so that they have an obvious difference with values in highly textured areas. Experimental results show the advantages of this improved approach visually, and the enhancement of the invisibility of watermarks.

Keywords

content-based watermarking scale-invariant feature transform density-based clustering 

References

  1. 1.
    van Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A digital watermark. In: Proceedings of 1st International Conference on Image Processing (ICIP 1994), vol. 2, pp. 86–90 (1994)Google Scholar
  2. 2.
    Cox, I.J., Miller, M.L.: A review of watermarking and the importance of perceptual modelling. In: Proc. SPIE Conf. on Human Vision and Electronic Imaging II, vol. 3016, pp. 92–99 (1997)Google Scholar
  3. 3.
    Nill, N.B.: A Visual Model Weighted Cosine Transform for Image Compression and Quality Assessment. IEEE Transactions on Communications 33(6), 551–557 (1985)CrossRefGoogle Scholar
  4. 4.
    Jayant, N., Johnston, J., Safranek, B.: Signal compression based on models of human perception. Proceedings of the IEEE 81(10), 1385–1422 (1993)CrossRefGoogle Scholar
  5. 5.
    Eckert, M.P., Bradley, A.P.: Perceptual quality metrics applied to still image compression. Signal Processing 70(3), 177–200 (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Kankanhalli, M.S., Rajmohan, Ramakrishnan, K.R.: Content based watermarking of images. In: International Multimedia Conference in: Proceedings of the Sixth ACM International Conference on Multimedia, Bristol, United Kingdom, pp. 61–70 (1998)Google Scholar
  7. 7.
    Delaigle, J.F., De Vleeschouwer, C., Macq, B.: Psychovisual approach to digital picture watermarking. Journal of Electronic Imaging 7(3), 628–640 (1998)CrossRefMATHGoogle Scholar
  8. 8.
    Delaigle, J.F., De Vleeschouwer, C., Macq, B.: Watermarking algorithm based on a human visual model. Signal Processing 66(3), 319–335 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Autrusseau, F., Le Callet, P.: A robust image watermarking technique based on quantization noise visibility thresholds. Signal Processing 87(6), 1363–1383 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Andrew, B.: Watson. DCT quantization matrices visually optimized for individual images. In: Proceedings of SPIE: Human vision, Visual Processing and Digital Display IV, vol. 1913, pp. 202–216Google Scholar
  11. 11.
    Lewis, A.S., Knowles, G.: Image compression using the 2-D wavelet transform. IEEE Trans. Image Processing 1, 244–250 (1992)CrossRefGoogle Scholar
  12. 12.
    Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Transaction on Image Processing 10(5), 783–791 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. IEEE Journal on Selected Areas in Communications 16(4), 525–539 (1998)CrossRefGoogle Scholar
  14. 14.
    Watson, A.B., Yang, G.Y., Solomon, J.A., Villasenor, J.D.: Visibility of wavelet quantization noise. IEEE Transactions on Image Processing 6(8), 1164–1175 (1997)CrossRefGoogle Scholar
  15. 15.
    Qi, H., Zheng, D., Zhao, J.: Human visual system based adaptive digital image watermarking. Signal Processing 88(1), 174–188 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Voloshynovskiy, S., Herrigel, A., Baumgaertner, N., Pun, T.: A stochastic approach to content adaptive digital image watermarking. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 212–236. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    David, G.: Lowe. Object Recognition from Local Scale-Invariant Features. In: International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157 (September 1999)Google Scholar
  18. 18.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  19. 19.
    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Transactions on Information Forensics and Security (in press, 2011)Google Scholar
  20. 20.
    Pan, X., Lyu, S.: Region Duplication Detection Using Image Feature Matching. IEEE Transactions on Information Forensics and Security 5(4), 857–867 (2010)CrossRefGoogle Scholar
  21. 21.
    Nguyen, P.-B., Beghdadi, A., Luong, M.: Robust Watermarking in DoG Scale Space Using a Multi-scale JND Model. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds.) PCM 2009. LNCS, vol. 5879, pp. 561–573. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Lee, H.-Y., Lee, C.-h., Lee, H.-K., Nam, J.: Feature-Based Image Watermarking Method Using Scale-Invariant Keypoints. In: Ho, Y.-S., Kim, H.-J. (eds.) PCM 2005. LNCS, vol. 3768, pp. 312–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Na Li
    • 1
    • 2
  • Edwin Hancock
    • 2
  • Xiaoshi Zheng
    • 1
  • Lin Han
    • 2
  1. 1.Shandong Computer Science CenterShandong Provincial Key Laboratory of computer NetworkJi’nanChina
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations