Selection of Suspicious ROIs in Breast DCE-MRI

  • Roberta Fusco
  • Mario Sansone
  • Carlo Sansone
  • Antonella Petrillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) could be helpful in screening high-risk women and in staging newly diagnosed breast cancer patients. Selection of suspicious regions of interest (ROIs) is a critical pre-processing step in DCE-MRI data evaluation. The aim of this work is to develop and evaluate a method for automatic selection of suspicious ROIs for breast DCE-MRI. The proposed algorithm includes three steps: (i) breast mask segmentation via intensity threshold estimation; (ii) morphological operations for hole-filling and leakage removal; (iii) suspicious ROIs extraction. The proposed approach has been evaluated, using adequate metrics, with respect to manual ROI selection performed, on ten patients, by an expert radiologist.


DCE-MRI Breast ROI selection segmentation 


  1. 1.
    Lehman, C.D., Gatsonis, C., Kuhl, C.K., Hendrick, R.E., Pisano, E.D., Hanna, L., Peacock, S., Smazal, S.F., Maki, D.D., Julian, T.B., DePeri, E.R., Bluemke, D.A., Schnall, M.D.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. The New England Journal of Medicine 356, 1295–1303 (2007)CrossRefGoogle Scholar
  2. 2.
    Olsen, O., Gøtzsche, P.C.: Screening for breast cancer with mammography, Cochrane Database of Systematic Reviews, p. CD001877 (2001) (Online)Google Scholar
  3. 3.
    McRobbie, D., et al.: MRI, From picture to proton (2003)Google Scholar
  4. 4.
    Daniel, L., et al.: Breast Disease: Dynamic Spiral MR Imaging. Radiology 209, 499–509 (1998)CrossRefGoogle Scholar
  5. 5.
    Eyal, E., Degani, H.: Model based and Model free parametric analysis of breast dynamic contrast enhanced MRI. NMR Biomed. (2007)Google Scholar
  6. 6.
    Liney, G.P., Sreenivas, M., Gibbs, P., Garcia-Alvarez, R., Turnbull, L.W.: Breast lesion analysis of shape technique: semiautomated vs. manual morphological description. Journal of Magnetic Resonance Imaging: JMRI 23, 493–498 (2006)CrossRefGoogle Scholar
  7. 7.
    Gal, Y., Mehnert, A., Bradley, A., McMahon, K., Crozier, S.: Automatic Segmentation of Enhancing Breast Tissue in Dynamic Contrast-Enhanced MR Images. In: 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007), Glenelg, Australia, pp. 124–129 (2007)Google Scholar
  8. 8.
    Tzacheva, A.A., Najarian, K., Brockway, J.P.: Breast cancer detection in gadolinium-enhanced MR images by static region descriptors and neural networks. J. Magn. Reson. Imaging 17(3), 337–342 (2003)CrossRefGoogle Scholar
  9. 9.
    Lucht, R.E.A., Knopp, M.V., Brix, G.: Classification of signal time curves from dynamic MR mammography by neural networks. Magn. Reson. Imaging, 51–57 (2001)Google Scholar
  10. 10.
    Lee, S.H., Kim, J.H., Park, J.S., Chang, J.M., Park, S.J., Jung, Y.S., Moon, W.K.: Computerized Segmentation and Classification of Breast Lesions Using Perfusion Volume Fractions in Dynamic Contrast-enhanced MRI. In: International Conference on BioMedical Engineering and Informatics, pp. 58–62. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  11. 11.
    Twellmann, T., Lichte, O., Nattkemper, T.W.: An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE Trans. Med. Imaging 3, 21 (2005)Google Scholar
  12. 12.
    Chen, W., Giger, M.L., Li, H., Bick, U., Newstead, G.M.: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn. Reson. Med. (2007)Google Scholar
  13. 13.
    Issa, Improved discrimination of breast lesions using selective sampling of segmented MR images, MAGMA (2006)Google Scholar
  14. 14.
    Meinel, L.A., Buelow, T., Huo, D., Shimauchi, A., Kose, U., Buurman, J., Newstead, G.: Robust segmentation of mass-lesions in contrast-enhanced dynamic breast MR images. Journal of Magnetic Resonance Imaging: JMRI 32, 110–119 (2010)CrossRefGoogle Scholar
  15. 15.
    Sinha, U., Sinha, S., Lucas-Quesada, F.A.: Segmentation strategies for breast tumors from dynamic MR images. Journal of Magnetic Resonance Imaging 6, 753–763Google Scholar
  16. 16.
    Torricelli, P., Pecchi, A., Luppi, G., Romagnoli, R.: Gadolinium-enhanced MRI with dynamic evaluation in diagnosing the local recurrence of rectal cancer. Abdominal Imaging 28, 19–27 (2003)CrossRefGoogle Scholar
  17. 17.
    Udupa, J.K., Leblanc, V.R., Zhuge, Y., Imielinska, C., Schmidt, H., Currie, L.M., Hirsch, B.E., Woodburn, J.: A framework for evaluating image segmentation algorithms. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society 30, 75–87 (2006)CrossRefGoogle Scholar
  18. 18.
    Woods, B.J., Clymer, B.D., Kurc, T., Heverhagen, J.T., Stevens, R., Orsdemir, A., Bulan, O., Knopp, M.V.: Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data. J. Magn. Reson. Imaging 25(3), 495–501 (2007)CrossRefGoogle Scholar
  19. 19.
    Hill, A., Mehnert, A., Crozier, S.: Edge intensity normalization as a bias field correction during balloon snake segmentation of breast MRI. In: Conf. Proc. IEEE Eng Med Biol Soc., pp. 3040–3043 (2008)Google Scholar
  20. 20.
    Cui, Y., Tan, Y., Liberman, L., Parbhu, R., Kaplan, J., Schwartz Malignant, L.H.: lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed. Med. Phys. 36, 4359 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roberta Fusco
    • 1
    • 3
  • Mario Sansone
    • 1
  • Carlo Sansone
    • 2
  • Antonella Petrillo
    • 3
  1. 1.Dipartimento di Ingegneria Biomedica, Elettronica e delle TelecomunicazioniUniversitá ‘Federico II’ di NapoliItalia
  2. 2.Dipartimento di Informatica e SistemisticaUniversitá ‘Federico II’ di NapoliItalia
  3. 3.Dipartimento di Diagnostica per ImmaginiIstituto Nazionale dei Tumori ‘Fondazione Pascale’NapoliItalia

Personalised recommendations