New Error Measures to Evaluate Features on Three-Dimensional Scenes

  • Fabio Bellavia
  • Domenico Tegolo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

In this paper new error measures to evaluate image features in 3D scenes are proposed and reviewed. The proposed error measures are designed to take into account feature shapes, and ground truth data can be easily estimated. As other approaches, they are not error-free and a quantitative evaluation is given according to the number of wrong matches and mismatches in order to assess their validity.

Keywords

Feature detector feature descriptor feature matching feature comparison overlap error epipolar geometry 

References

  1. 1.
    Bellavia, F., Tegolo, D., Trucco, E.: Improving SIFT-based descriptors stability to rotations. In: International Conference on Pattern Recognition (2010)Google Scholar
  2. 2.
    Bellavia, F., Tegolo, D., Valenti, C.: Improving Harris corner selection strategy. IET Computer Vision 5(2) (2011)Google Scholar
  3. 3.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Forssén, P., Lowe, D.G.: Shape descriptors for maximally stable extremal regions. In: International Conference on Computer Vision. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  5. 5.
    Fraundorfer, F., Bischof, H.: A novel performance evaluation method of local detectors on non-planar scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, p. 33. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  9. 9.
    Mikolajczyk, K., Tuytelaars, T., et al.: Affine covariant features (2010), http://www.robots.ox.ac.uk/~vgg/research/affine
  10. 10.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. International Journal of Computer Vision 73(3), 263–284 (2007)CrossRefGoogle Scholar
  11. 11.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Heidelberg (2010)MATHGoogle Scholar
  13. 13.
    Torr, P.H.S., Zisserman, A.: Robust computation and parametrization of multiple view relations. In: International Conference on Computer Vision, p. 727. IEEE Computer Society, Los Alamitos (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fabio Bellavia
    • 1
  • Domenico Tegolo
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of PalermoPalermoItaly

Personalised recommendations