Advertisement

Automated Identification of Photoreceptor Cones Using Multi-scale Modelling and Normalized Cross-Correlation

  • Alan Turpin
  • Philip Morrow
  • Bryan Scotney
  • Roger Anderson
  • Clive Wolsley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

Analysis of the retinal photoreceptor mosaic can provide vital information in the assessment of retinal disease. However, visual analysis of photoreceptor cones can be both difficult and time consuming. The use of image processing techniques to automatically count and analyse these photoreceptor cones would be beneficial. This paper proposes the use of multi-scale modelling and normalized cross-correlation to identify retinal cones in image data obtained from a modified commercially available confocal scanning laser ophthalmoscope (CSLO). The paper also illustrates a process of synthetic data generation to create images similar to those obtained from the CSLO. Comparisons between synthetic and manually labelled images and the automated algorithm are also presented.

Keywords

Modelling Cross Correlation Multi-Scale Retinal Cones 

References

  1. 1.
  2. 2.
    Li, K.Y., Roorda, A.: Automated Identification of Cone Photoreceptors in Adaptive Optics Retinal Images. J. Opt. Soc. Am. A. 24, 1358–1363 (2007)CrossRefGoogle Scholar
  3. 3.
    Roorda, A., Zhang, Y., Duncan, J.L.: High-Resolution In Vivo Imaging of the RPE Mosaic in eyes with Retinal Disease. Invest Ophthalmos. Vis. Sci. 48, 2297–2303 (2007)CrossRefGoogle Scholar
  4. 4.
    Roorda, A., Romero-Borja, F., Donnely, W., Queener, H., Hebert, T., Campell, M.: Adaptive Optics Scanning Laser Ophthalmoscopy. Opt. Express. 10, 405–412 (2002)CrossRefGoogle Scholar
  5. 5.
    Roorda, A., Metha, A.B., Lennie, P., Williams, D.R.: Packing Arrangement of the Three Cone Classes in Primate Retina. Vision Res. 41, 1291–1306 (2001)CrossRefGoogle Scholar
  6. 6.
    Wojtas, D.H., Wu, B., Ahnelt, P.K., Bones, P.J., Millane, R.P.: Automate Analysis of Differential Interference Contrast Microsopy Images of the Foveal Cone Mosaic. J. Opt. Soc. Am. A. 25, 1181–1189 (2008)CrossRefGoogle Scholar
  7. 7.
    Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E.: Human Photoreceptor Topography. JCN 292, 497–523 (1990)Google Scholar
  8. 8.
    Nicholson, W.V., Glaeser, R.M.: Review: Automatic Particle Detection in Electron Microscopy. J. Struct. Biol. 133, 90–101 (2001)CrossRefGoogle Scholar
  9. 9.
    Paques, M., Simonutti, M., Roux, M., Bellman, C., Lacombe, F., Grieve, K., Glanc, M., LeMer, Y., Sahel, J.: High-Resolution Imaging of Retinal Cells in the Living Eye 21, S18–S20 (2007)Google Scholar
  10. 10.
    Heidelberg Engineering, http://www.heidelbergengineering.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alan Turpin
    • 1
  • Philip Morrow
    • 1
  • Bryan Scotney
    • 1
  • Roger Anderson
    • 2
  • Clive Wolsley
    • 2
  1. 1.School of Computing and Information Engineering, Faculty of Computing and EngineeringUniversity of UlsterNorthern Ireland
  2. 2.School of Biomedical Sciences, Faculty of Life and Health SciencesUniversity of UlsterNorthern Ireland

Personalised recommendations