Half Ellipse Detection

  • Nikolai Sergeev
  • Stephan Tschechne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

This paper presents an algorithm of half ellipse detection from color images. Additionally the algorithm detects two color average values along the both sides of a half ellipse. In contrast to standard methods the new one finds not only parameters of the entire ellipse but also the end points of a half ellipse. The paper introduces a new way of edge and line detection. The new detector of edges in color images was designed to extract color on the both sides of an edge. The new line detector is designed to optimize the detection of endpoints of a line.

Keywords

Edge detection line detection ellipse detection 

References

  1. [Canny, 1986]
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (1986)Google Scholar
  2. [Caputo et al., 2000]
    Caputo, B., Hornegger, J., Paulus, D., Niemann, H.: A spin-glass markov random field for 3d object recognition. In: NIPS 2000 (2000)Google Scholar
  3. [H.K. Yuen, 1988]
    Yuen, H.K., Illingworth, J.: Ellipse detection using the hough transformation. In: 4. Alvey Vision Conference (1988)Google Scholar
  4. [Hough, 1962]
    Hough, P.V.C.: Method and Means of Recognising Complex Patterns. US Patent 3069654 (1962)Google Scholar
  5. [Nene et al., 1996]
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library, COIL-100 (1996)Google Scholar
  6. [Obdrzalek and Matas, 2011]
    Obdrzalek, S., Matas, J.: Object recognition using local affine frames. In: BMVC (2011)Google Scholar
  7. [Prewitt, 1970]
    Prewitt, J.: Picture Processing and Psychopictorics, ch. (75-149). Academic Press, London (1970)Google Scholar
  8. [Sergeev and Palm, 2011]
    Sergeev, N., Palm, G.: A new object recognition system. In: VISAPP 2011 (2011)Google Scholar
  9. [Tsuji and Matsumoto, 1978]
    Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified hough transform. IEEE Trans. Comput. (1978)Google Scholar
  10. [Yang et al., 2000]
    Yang, M.-H., Roth, D., Ahuja, N.: Learning to recognize 3D objects with sNoW. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 439–454. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nikolai Sergeev
    • 1
  • Stephan Tschechne
    • 1
  1. 1.Institute for Neural Information ProcessingUniversity of UlmUlmGermany

Personalised recommendations