Advertisement

IDEA: Intrinsic Dimension Estimation Algorithm

  • Alessandro Rozza
  • Gabriele Lombardi
  • Marco Rosa
  • Elena Casiraghi
  • Paola Campadelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

The high dimensionality of some real life signals makes the usage of the most common signal processing and pattern recognition methods unfeasible. For this reason, in literature a great deal of research work has been devoted to the development of algorithms performing dimensionality reduction. To this aim, an useful help could be provided by the estimation of the intrinsic dimensionality of a given dataset, that is the minimum number of parameters needed to capture, and describe, all the information carried by the data. Although many techniques have been proposed, most of them fail in case of noisy data or when the intrinsic dimensionality is too high. In this paper we propose a local intrinsic dimension estimator exploiting the statistical properties of data neighborhoods. The algorithm evaluation on both synthetic and real datasets, and the comparison with state of the art algorithms, proves that the proposed technique is promising.

Keywords

Intrinsic dimension estimation feature reduction manifold learning 

References

  1. 1.
    Camastra, F., Vinciarelli, A.: Estimating the intrinsic dimension of data with a fractal-based method. IEEE Trans. PAMI 24, 1404–1407 (2002)CrossRefGoogle Scholar
  2. 2.
    Costa, J.A., Hero, A.O.: Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on SP 52(8), 2210–2221 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Costa, J.A., Hero, A.O.: Learning intrinsic dimension and entropy of high-dimensional shape spaces. In: EUSIPCO (2004)Google Scholar
  4. 4.
    Costa, J.A., Hero, A.O.: Learning intrinsic dimension and entropy of shapes. In: Krim, H., Yezzi, T. (eds.) Statistics and Analysis of Shapes. Birkhäuser, Basel (2005)Google Scholar
  5. 5.
    Donoho, D.L., Grimes, C.: Hessian Eigenmaps: New Locally Linear Embedding Techniques For High-Dimensional Data. Technical report (July 2003)Google Scholar
  6. 6.
    Eckmann, J.P., Ruelle, D.: Fundamental limitations for estimating dimensions and lyapunov exponents in dynamical systems. Physica D 56(2-3), 185–187 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fukunaga, K.: Intrinsic Dimensionality Extraction. Classification. In: Pattern Recognition and Reduction of Dimensionality (1982)Google Scholar
  9. 9.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9, 189 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gupta, M.D., Huang, T.: Regularized maximum likelihood for intrinsic dimension estimation. In: UAI (2010)Google Scholar
  11. 11.
    Hein, M.: Intrinsic dimensionality estimation of submanifolds in euclidean space. In: ICML, pp. 289–296 (2005)Google Scholar
  12. 12.
    Jollife, I.T.: Principal Component Analysis. Springer Series in Statistics. Springer, New York (1986)CrossRefGoogle Scholar
  13. 13.
    Kégl, B.: Intrinsic dimension estimation using packing numbers. In: Proc. of NIPS, pp. 681–688 (2002)Google Scholar
  14. 14.
    LeCun, Y., Cortes, C.: Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  15. 15.
    Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: NIPS, vol. 1, pp. 777–784 (2005)Google Scholar
  16. 16.
    Mordohai, P., Medioni, G.: Dimensionality estimation, manifold learning and function approximation using tensor voting. J. Mach. Learn. Res. 11, 411–450 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  18. 18.
    Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alessandro Rozza
    • 1
  • Gabriele Lombardi
    • 1
  • Marco Rosa
    • 1
  • Elena Casiraghi
    • 1
  • Paola Campadelli
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations