A Rough-Fuzzy HSV Color Histogram for Image Segmentation

  • Alessio Ferone
  • Sankar Kumar Pal
  • Alfredo Petrosino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


A color image segmentation technique which exploits a novel definition of rough fuzzy sets and the rough–fuzzy product operation is presented. The segmentation is performed by partitioning each block in multiple rough fuzzy sets that are used to build a lower and a upper histogram in the HSV color space. For each bin of the lower and upper histograms a measure, called τ index, is computed to find the best segmentation of the image. Experimental results show that the proposed method retains the structure of the color images leading to an effective segmentation.


Image segmentation Color Image Histogram Rough Sets Fuzzy Sets 


  1. 1.
    Chapron, M.: A new chromatic edge detector used for color image segmentation. In: Proc. 11th Int. Conf. on Pattern Recognition, vol. 3, pp. 311–314 (1992)Google Scholar
  2. 2.
    Cheng, H.D., Jiang, X.H., Wang, J.: Color image segmentation based on homogram thresholding and region merging. Pattern Recognition 35, 373–393 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Li, S.Z.: Markov Random Field Modeling in Computer Vision, Kunii, T.L. (ed.). Springer, Berlin (1995)CrossRefGoogle Scholar
  4. 4.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proc. 8th Int Conf. Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  5. 5.
    Mohabey, A., Ray, A.K.: Rough set theory based segmentation of color images. In: Proc. 19th Internat. Conf. NAFIPS, pp. 338–342 (2000)Google Scholar
  6. 6.
    Mushrif, M.M., Ray, A.K.: Color image segmentation: Rough-set theoretic approach. Pattern Recognition Letters 29, 483–493 (2008)CrossRefGoogle Scholar
  7. 7.
    Panjwani, D.K., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Trans. Pattern Anal. Mach. Intell. 17(10), 939–954 (1995)CrossRefGoogle Scholar
  8. 8.
    Pawlak, Z.: Rough sets. Int. J. of Inf. and Comp. Sci. 5, 341–356 (1982)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pawlak, z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)Google Scholar
  10. 10.
    Sen, D., Pal, S.K.: Generalized Rough Sets, Entropy, and Image Ambiguity Measures. IEEE Trans. Sys. Man and Cyb. 39(1), 117–128 (2009)CrossRefGoogle Scholar
  11. 11.
    Petrosino, A., Ferone, A.: Feature Discovery through Hierarchies of Rough Fuzzy Sets. In: Chen, S.M., Pedrycz, W. (eds.) Granular Computing and Intelligent Systems: Design with Information Granules of Higher Order and Higher Type (to appear, 2011)Google Scholar
  12. 12.
    Shafarenko, L., Petrou, M., Kittler, J.V.: Histogram based segmentation in a perceptually uniform color space. IEEE Trans. Image Process. 7(9), 1354–1358 (1998)CrossRefGoogle Scholar
  13. 13.
    Trémeau, A., Colantoni, P.: Regions adjacency graph applied to color image segmentation. IEEE Trans. Image Process. 9(4), 735–744 (2000)CrossRefGoogle Scholar
  14. 14.
    Uchiyama, T., Arbib, M.A.: Color image segmentation using competitive learning. IEEE Trans. Pattern Anal. Mach. Intell. 16(12), 1197–1206 (1994)CrossRefGoogle Scholar
  15. 15.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: A Measure for Objective Evaluation of Image Segmentation Algorithms. In: Proc. CVPR WEEMCV (2005)Google Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alessio Ferone
    • 1
  • Sankar Kumar Pal
    • 2
  • Alfredo Petrosino
    • 1
  1. 1.DSA - Universitá di Napoli ParthenopeNapoliItaly
  2. 2.Machine Intelligence Unit, Indian Statistical InstituteKolkataIndia

Personalised recommendations