Advertisement

Improving 3D Reconstruction for Digital Art Preservation

  • Jurandir Santos Junior
  • Olga Bellon
  • Luciano Silva
  • Alexandre Vrubel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

Achieving a high fidelity triangle mesh from 3D digital reconstructions is still a challenge, mainly due to the harmful effects of outliers in the range data. In this work, we discuss these artifacts and suggest improvements for two widely used volumetric integration techniques: VRIP and Consensus Surfaces (CS). A novel contribution is a hybrid approach, named IMAGO Volumetric Integration Algorithm (IVIA), which combines strengths from both VRIP and CS while adds new ideas that greatly improve the detection and elimination of artifacts. We show that IVIA leads to superior results when applied in different scenarios. In addition, IVIA cooperates with the hole filling process, improving the overall quality of the generated 3D models. We also compare IVIA to Poisson Surface Reconstruction, a state-of-the-art method with good reconstruction results and high performance both in terms of memory usage and processing time.

Keywords

range data 3D reconstruction cultural heritage 

References

  1. 1.
    Bernardini, F., Rushmeier, H.: The 3D model acquisition pipeline. Computer Graphics Forum 21(2), 149–172 (2002)CrossRefGoogle Scholar
  2. 2.
    Ikeuchi, K., Oishi, T., et al.: The Great Buddha project: Digitally archiving, restoring, and analyzing cultural heritage objects. IJCV 75, 189–208 (2007)CrossRefGoogle Scholar
  3. 3.
    Vrubel, A., Bellon, O., Silva, L.: A 3D reconstruction pipeline for digital preservation of natural and cutural assets. In: Proc. of CVPR, pp. 2687–2694 (2009)Google Scholar
  4. 4.
    Levoy, M., Pulli, K., et al.: The Digital Michelangelo project: 3D scanning of large statues. In: SIGGRAPH, pp. 131–144 (2000)Google Scholar
  5. 5.
    Miyazaki, D., Oishi, T., Nishikawa, T., Sagawa, R., Nishino, K., Tomomatsu, T., Takase, Y., Ikeuchi, K.: The Great Buddha project: Modelling cultural heritage through observation. In: Proc. of VSMM, pp. 138–145 (2002).Google Scholar
  6. 6.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proc. SIGGRAPH, pp. 303–312 (1996)Google Scholar
  7. 7.
    Wheeler, M.D., Sato, Y., Ikeuchi, K.: Consensus surfaces for modeling 3D objects from multiple range image. In: Proc. of ICCV, pp. 917–924 (1998)Google Scholar
  8. 8.
    Davis, J., Marschner, S.R., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: Proc. of 3DPVT, pp. 42–438 (2002)Google Scholar
  9. 9.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. of SIGGRAPH, pp. 61–70 (2006)Google Scholar
  10. 10.
    Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: Proc. of Latin Amer. Symp. Theoretical Informatics, pp. 119–132 (1998)Google Scholar
  11. 11.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. of SIGGRAPH, pp. 311–318 (1994)Google Scholar
  12. 12.
    Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. In: IEEE TVCG, pp. 349–359 (1999)Google Scholar
  13. 13.
    Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., Cohen-Or, D.: Competing fronts for coarse-to-fine surface reconstruction. In: Computer Graphics, pp. 389–398 (2006)Google Scholar
  14. 14.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Transactions on Graphics 22, 463–470 (2006)CrossRefGoogle Scholar
  15. 15.
    Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics 24, 544–552 (2005)CrossRefGoogle Scholar
  16. 16.
    Bolitho, M., Kazhdan, M., Burns, R., Hoppe, H.: Parallel poisson surface reconstruction. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 678–689. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Bolitho, M., Kazhdan, M., Burns, R., Hoppe, H.: Multilevel Streaming for Out-of-Core Surface Reconstruction. In: Proc. Eurographics (2007)Google Scholar
  18. 18.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proc. of SIGGRAPH, pp. 163–169 (1997)Google Scholar
  19. 19.
    Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Reliable surface reconstructiuon from multiple range images. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 117–126. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Sagawa, R., Nishino, K., Ikeuchi, K.: Robust and adaptive integration of multiple range images with photometric attributes. In: Proc. of CVPR, pp. II:172–II:179 (2001)Google Scholar
  21. 21.
    Sagawa, R., Ikeuchi, K.: Taking consensus of signed distance field for complementing unobservable surface. In: Proc. of 3DIM, pp. 410–417 (2003)Google Scholar
  22. 22.
    Masuda, T.: Object shape modelling from multiple range images by matching signed distance fields. In: Proc. of 3DPVT, pp. 439–448 (2002)Google Scholar
  23. 23.
    Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi, P., Scopigno, R.: The marching intersections algorithm for merging range images. Visual Computer 20(2-3), 149–164 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jurandir Santos Junior
    • 1
  • Olga Bellon
    • 1
  • Luciano Silva
    • 1
  • Alexandre Vrubel
    • 1
  1. 1.Department of InformaticsUniversidade Federal do Parana, IMAGO Research GroupCuritibaBrazil

Personalised recommendations