Real-Time Hand Gesture Recognition Using a Color Glove

  • Luigi Lamberti
  • Francesco Camastra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


This paper presents a real-time hand gesture recognizer based on a color glove. The recognizer is formed by three modules. The first module, fed by the frame acquired by a webcam, identifies the hand image in the scene. The second module, a feature extractor, represents the image by a nine-dimensional feature vector. The third module, the classifier, is performed by means of Learning Vector Quantization. The recognizer, tested on a dataset of 907 hand gestures, has shown very high recognition rate.


Virtual Reality Recognition Rate Gesture Recognition Segmentation Process Hand Gesture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kendon, A.: How gestures can become like words. In: Crosscultural Perspectives in Nonverbal Communication, Toronto, Hogrefe, pp. 131–141 (1988)Google Scholar
  2. 2.
    Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews 37(3), 311–324 (2007)CrossRefGoogle Scholar
  3. 3.
    Burdea, G.C., Coiffet, P.: Virtual Reality Technology. John-Wiley & Sons, New York (2003)Google Scholar
  4. 4.
    Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based systems and their applications. IEEE Transactions on Systems, Man and Cybernetics 38(4), 461–482 (2008)CrossRefGoogle Scholar
  5. 5.
    Wang, R.Y., Popovic, J.: Real-time hand-tracking with a color glove. ACM Transactions on Graphics 28(3), 461–482 (2009)Google Scholar
  6. 6.
    Gonzales, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Upper Saddle River (2002)Google Scholar
  7. 7.
    DelBimbo, A.: Visual Information Processing. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  8. 8.
    Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lamberti, L.: Handy: Riconoscimento di semplici gesti mediante webcam. B. Sc. Dissertation (in Italian), University of Naples ”Parthenope” (2010)Google Scholar
  10. 10.
    Shawe-Taylor, J., Cristianini, N.: Kernels Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John-Wiley & Sons, New York (2001)zbMATHGoogle Scholar
  13. 13.
    Kohonen, T.: Learning vector quantization. In: The Handbook of Brain Theory and Neural Networks, pp. 537–540. MIT Press, Cambridge (1995)Google Scholar
  14. 14.
    Stone, M.: Cross-validatory choice and assessment of statistical prediction. Journal of the Royal Statistical Society 36(1), 111–147 (1974)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., Torkkola, K.: Lvq-pak: The learning vector quantization program package. Technical Report A30, Helsinki University of Technology, Laboratory of Computer and Information Science (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luigi Lamberti
    • 1
  • Francesco Camastra
    • 2
  1. 1.Istituto Tecnico Industriale “Enrico Medi”San Giorgio a CremanoItaly
  2. 2.Department of Applied ScienceUniversity of Naples ParthenopeNaplesItaly

Personalised recommendations