Advertisement

A New Perception-Based Segmentation Approach Using Combinatorial Pyramids

  • Esther Antúnez
  • Rebeca Marfil
  • Antonio Bandera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

This paper presents a bottom-up approach for perceptual segmentation of natural images. The segmentation algorithm consists of two consecutive stages: firstly, the input image is partitioned into a set of blobs of uniform colour (pre-segmentation stage) and then, using a more complex distance which integrates edge and region descriptors, these blobs are hierarchically merged (perceptual grouping). Both stages are addressed using the Combinatorial Pyramid, a hierarchical structure which can correctly encode relationships among image regions at upper levels. Thus, unlike other methods, the topology of the image is preserved. The performance of the proposed approach has been initially evaluated with respect to ground-truth segmentation data using the Berkeley Segmentation Dataset and Benchmark. Although additional descriptors must be added to deal with textured surfaces, experimental results reveal that the proposed perceptual grouping provides satisfactory scores.

Keywords

perceptual grouping irregular pyramids combinatorial pyramids 

References

  1. 1.
    Arbeláez, P.: Boundary extraction in natural images using ultrametric contour maps. In: Proc. 5th IEEE Workshop Perceptual Org. in Computer Vision, pp. 182–189 (2006)Google Scholar
  2. 2.
    Arbeláez, P., Cohen, L.: A metric approach to vector-valued image segmentation. Int. Journal of Computer Vision 69, 119–126 (2006)CrossRefGoogle Scholar
  3. 3.
    Bister, M., Cornelis, J., Rosenfeld, A.: A critical view of pyramid segmentation algorithms. Pattern Recongition Letters 11(9), 605–617 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Borůvka, O.: O jistém problému minimálnim. Práce Mor. Pr̆írodvĕd. Spol. v Brnĕ (Acta Societ. Scienc. Natur. Moravicae) 3(3), 37–58 (1926)Google Scholar
  5. 5.
    Brun, L., Kropatsch, W.: Introduction to combinatorial pyramids. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 108–128. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Haxhimusa, Y., Ion, A., Kropatsch, W.G.: Evaluating hierarchical graph-based segmentation. In: Tang, Y.Y., et al. (eds.) Proceedings of 18th International Conference on Pattern Recognition (ICPR), Hong Kong, China, vol. 2, pp. 195–198. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  7. 7.
    Haxhimusa, Y., Kropatsch, W.G.: Segmentation graph hierarchies. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 343–351. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Huart, J., Bertolino, P.: Similarity-based and perception-based image segmentation. In: Proc. IEEE Int. Conf. on Image Processing, vol. 3, pp. 1148–1151 (2005)Google Scholar
  9. 9.
    Kropatsch, W.: Building irregular pyramids by dual graph contraction. IEEE Proc. Vision, Image and Signal Processing 142(6), 366–374 (1995)CrossRefGoogle Scholar
  10. 10.
    Lau, H., Levine, M.: Finding a small number of regions in an image using low-level features. Pattern Recognition 35, 2323–2339 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Marfil, R., Bandera, A.: Comparison of perceptual grouping criteria within an integrated hierarchical framework. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 366–375. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Marfil, R., Molina-Tanco, L., Bandera, A., Rodríguez, J.A., Sandoval Hernández, F.: Pyramid segmentation algorithms revisited. Pattern Recognition 39(8), 1430–1451 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using brightness, color, and texture cues. IEEE Trans. on Pattern Analysis Machine Intell. 26(1), 1–20 (2004)CrossRefGoogle Scholar
  14. 14.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. Int. Conf. Computer Vision (2001)Google Scholar
  15. 15.
    Pham, T., Smeulders, A.: Learning spatial relations in object recognition. Pattern Recognition Letters 27, 1673–1684 (2006)CrossRefGoogle Scholar
  16. 16.
    Zlatoff, N., Tellez, B., Baskurt, A.: Combining local belief from low-level primitives for perceptual grouping. Pattern Recognition 41, 1215–1229 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Esther Antúnez
    • 1
  • Rebeca Marfil
    • 1
  • Antonio Bandera
    • 1
  1. 1.Grupo ISIS, Dpto. Tecnología Electrónica, ESTI TelecomunicaciónUniversidad de Málaga, Campus de TeatinosMálagaSpain

Personalised recommendations