Von Kries Model under Planckian Illuminants

  • Michela Lecca
  • Stefano Messelodi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


Planckian illuminants and von Kries diagonal model are commonly assumed by many computer vision algorithms for modeling the color variations between two images of a same scene captured under two different illuminants. Here we present a method to estimate a von Kries transform approximating a Planckian illuminant change and we show that the Planckian assumption constraints the von Kries coefficients to belong to a ruled surface, that depends on physical cues of the lights. Moreover, we provide an approximated parametric representation of such a surface, making evident the dependence of the von Kries transform on the light color temperature and on the intensity.


Spectral Power Color Temperature Correlate Color Temperature Computer Vision Algorithm Color Image Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barnard, K., Ciurea, F., Funt, B.: Sensor sharpening for computational color constancy. J. Opt. Soc. Am. A 18, 2728–2743 (2001)CrossRefGoogle Scholar
  2. 2.
    Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 129–132. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Finlayson, G., Schaefer, G., Tian, G.Y.: The UEA uncalibrated colour image database. Technical Report SYS-C00-07, School of Information Systems, University of East Anglia, Norwich, United Kingdom (2000)Google Scholar
  4. 4.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Diagonal transforms suffice for color constancy. In: Proc. of International Conference of Computer Vision (1993)Google Scholar
  5. 5.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Spectral sharpening: sensor transformations for improved color constancy. J. Opt. Soc. Am. A 11(5), 1553–1563 (1994)CrossRefGoogle Scholar
  6. 6.
    Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: a simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1209–1221 (2001)CrossRefGoogle Scholar
  7. 7.
    Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 59–68 (2006)CrossRefGoogle Scholar
  8. 8.
    He, Q., Chu, C.-h.H.: Intrinsic images by fisher linear discriminant. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 349–356. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Judd, D.B., MacAdam, D.L., Wyszecki, G., Budde, H.W., Condit, H.R., Henderson, S.T., Simonds, J.L.: Spectral distribution of typical daylight as a function of correlated color temperature. J. Opt. Soc. Am. 54(8), 1031–1036 (1964)CrossRefGoogle Scholar
  10. 10.
    Kelly, K.L.: Lines of constant correlated color temperature based on macadam’s (u,υ) uniform chromaticity transformation of the cie diagram. J. Opt. Soc. Am. 53(8), 999–1002 (1963)CrossRefGoogle Scholar
  11. 11.
    Lam, K.M.: Metamerism and colour constancy (1985)Google Scholar
  12. 12.
    Lecca, M., Messelodi, S.: Computing von kries illuminant changes by piecewise inversion of cumulative color histograms. ELCVIA 8(2) (2009)Google Scholar
  13. 13.
    Lecca, M., Messelodi, S.: Illuminant Change Estimation via Minimization of Color Histogram Divergence. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2009. LNCS, vol. 5646, pp. 41–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    McCamy, C.S.: Correlated color temperature as an explicit function of chromaticity coordinates. Color Research & Application 17(2), 142–144 (1992)CrossRefGoogle Scholar
  15. 15.
    Ojala, T., Topi, M., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex - new framework for empirical evaluation of texture analysis algorithms. In: Proc. of the 16 th ICPR 2002, vol. 1, p. 10701. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  16. 16.
    Ozden, M., Polat, E.: A color image segmentation approach for content-based image retrieval. Pattern Recognition, 1318–1325 (2007)Google Scholar
  17. 17.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)CrossRefGoogle Scholar
  18. 18.
    Schettini, R., Ciocca, G., Zuffi, S.: A survey of methods for colour image indexing and retrieval in image databases. In: Color Imaging Science: Exploiting Digital Media (2001)Google Scholar
  19. 19.
    Tominaga, S., Ishida, A., Wandell, B.A.: Color temperature estimation of scene illumination by the sensor correlation method. Syst. Comput. Japan 38, 95–108 (2007)CrossRefGoogle Scholar
  20. 20.
    Takahama, K., Nayatani, Y., Sobagaki, H.: Formulation of a nonlinear model of chromatic adaptation. Color Research & Application 6(3) (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michela Lecca
    • 1
  • Stefano Messelodi
    • 1
  1. 1.Fondazione Bruno Kessler - Center for Information TechnologyTrentoItaly

Personalised recommendations