Synchronous Detection for Robust 3-D Shape Measurement against Interreflection and Subsurface Scattering

  • Tatsuhiko Furuse
  • Shinsaku Hiura
  • Kosuke Sato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


Indirect reflection component degrades the preciseness of 3-D measurement with structured light projection. In this paper, we propose a method to suppress the indirect reflection components by spatial synchronous detection of structured light modulated with MLS (Maximum Length Sequence, M-sequence). Our method exploits two properties of indirect components; one is the high spatial frequency component which is attenuated through the scattering of projected light, and the other is the geometric constraint between projected light and its corresponding pixel of camera.

Several experimental results of measuring translucent or concave objects show the advantage of our method.


Subsurface Scattering Interreflection Shape Measurement 


  1. 1.
    Chen, T., Lensch, H.P.A., Fuchs, C., Seidel, H.P.: Polarization and phase-shifting for 3d scanning of translucent objects. In: Proc. CVPR, pp. 1–8 (2007)Google Scholar
  2. 2.
    Godin, G., Rioux, M., Beraldin, J.A.: An assessment of laser range measurement on marble surfaces. In: Conference on Optical 3D Measurement Techniques, pp. 49–56 (2001)Google Scholar
  3. 3.
    Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.P.: Disco – acquisition of translucent object. In: Proc. SIGGRAPH, pp. 835–844 (2004)Google Scholar
  4. 4.
    Ihrke, I., Kutulakos, K.N., Lensch, H.P.A., Magnor, M., Heidrich, W.: State of the art in transparent and specular object reconstruction. In: Proc. Eurographics, pp. 1–22 (2008)Google Scholar
  5. 5.
    Inokuchi, S., Sato, K., Matsuda, F.: Range-imaging system for 3d object recognition. In: Proc. of 7th International Conference on Pattern Recognition, pp. 806–808 (1984)Google Scholar
  6. 6.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proc. SIGGRAPH, pp. 511–518 (2001)Google Scholar
  7. 7.
    Levoy, M., Pulli, K., Curless, B.: Digital michelangelo project: 3d scanning of large statues. In: Proc. SIGGRAPH, pp. 131–144 (2000)Google Scholar
  8. 8.
    Luong, Q.T., Faugeras, O.D.: The fundamental matrix: Theory, algorithms, and stability analysis. International Journal of Computer Vision 17(1), 43–75 (1996)CrossRefGoogle Scholar
  9. 9.
    Mukaigawa, Y., Yagi, Y., Raskar, R.: Analysis of light transport in scattering media. In: Proc. CVPR, pp. 153–160 (2010)Google Scholar
  10. 10.
    Nayar, S.K., Krishnan, G., Grossberg, M., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. In: Proc. SIGGRAPH, pp. 9350–9943 (2006)Google Scholar
  11. 11.
    Sato, K., Inokuchi, S.: Range-imaging system utilizing nematic liquid crystal mask. In: Proc. of 1st International Conference on Computer Vision, pp. 657–661 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tatsuhiko Furuse
    • 1
  • Shinsaku Hiura
    • 1
  • Kosuke Sato
    • 1
  1. 1.Graduate School of Engineering ScienceOsaka UniversityOsakaJapan

Personalised recommendations