Advertisement

The Active Sampling of Gaze-Shifts

  • Giuseppe Boccignone
  • Mario Ferraro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

The ability to predict, given an image or a video, where a human might fixate elements of a viewed scene has long been of interest in the vision community.

In this note we propose a different view of the gaze-shift mechanism as that of a motor system implementation of an active random sampling strategy that the Human Visual System has evolved in order to efficiently and effectively infer properties of the surrounding world. We show how it can be exploited to carry on an attentive analysis of dynamic scenes.

Keywords

active vision visual attention video analysis 

References

  1. 1.
    Atkinson, R.P.D., Rhodes, C.J., Macdonald, D.W., Anderson, R.M.: Scale-free dynamics in the movement patterns of jackals. Oikos 98(1), 134–140 (2002)CrossRefGoogle Scholar
  2. 2.
    Benhamou, S.: How many animals really do the Lévy walk? Ecology 88(8), 1962–1969 (2007)CrossRefGoogle Scholar
  3. 3.
    Boccignone, G., Ferraro, M.: Modelling gaze shift as a constrained random walk. Physica A: Statistical Mechanics and its Applications 331(1-2), 207–218 (2004)CrossRefGoogle Scholar
  4. 4.
    Boccignone, G., Ferraro, M.: Gaze shifts as dynamical random sampling. In: Proceedings of 2nd European Workshop on Visual Information Processing (EUVIP 2010), pp. 29–34. IEEE Press, Los Alamitos (2010)CrossRefGoogle Scholar
  5. 5.
    Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Physics Reports 195, 127–293 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brockmann, D., Geisel, T.: The ecology of gaze shifts. Neurocomputing 32(1), 643–650 (2000)CrossRefGoogle Scholar
  7. 7.
    Chambers, J.M., Mallows, C.L., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Ass. 71(354), 340–344 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fulger, D., Scalas, E., Germano, G.: Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Physical Review E 77(2), 21122 (2008)CrossRefGoogle Scholar
  9. 9.
    Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vision Research 49(10), 1295–1306 (2009)CrossRefGoogle Scholar
  10. 10.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Machine Intell. 20, 1254–1259 (1998)CrossRefGoogle Scholar
  11. 11.
    Martinez, H., Lungarella, M., Pfeifer, R.: Stochastic Extension to the Attention-Selection System for the iCub. University of Zurich, Tech. Rep (2008)Google Scholar
  12. 12.
    Nagai, Y.: From bottom-up visual attention to robot action learning. In: Proceedings of 8 IEEE International Conference on Development and Learning, IEEE Press, Los Alamitos (2009)Google Scholar
  13. 13.
    Najemnik, J., Geisler, W.S.: Optimal eye movement strategies in visual search. Nature 434(7031), 387–391 (2005)CrossRefGoogle Scholar
  14. 14.
    Nolan, J.P.: Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston (2011)Google Scholar
  15. 15.
    Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Trans. Pattern Anal. Machine Intell. 22(9), 970–982 (2000)CrossRefGoogle Scholar
  16. 16.
    Ramos-Fernandez, G., Mateos, J.L., Miramontes, O., Cocho, G., Larralde, H., Ayala-Orozco, B.: Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology 55(3), 223–230 (2004)CrossRefGoogle Scholar
  17. 17.
    Reynolds, A.: How many animals really do the Lévy walk? Comment. Ecology 89(8), 2347–2351 (2008)CrossRefGoogle Scholar
  18. 18.
    Reynolds, A.M.: Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers. EPL (Europhysics Letters) 82, 20001 (2008)CrossRefGoogle Scholar
  19. 19.
    Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2(4), 354 (2007)CrossRefGoogle Scholar
  20. 20.
    Shiner, J.S., Davison, M., Landsberg, P.T.: Simple measure for complexity. Physical Review E 59(2), 1459–1464 (1999)CrossRefGoogle Scholar
  21. 21.
    Simoncelli, E., Adelson, E., Heeger, D.: Probability distributions of optical flow. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1991, pp. 310–315. IEEE, Los Alamitos (2002)Google Scholar
  22. 22.
    Torralba, A.: Contextual priming for object detection. Int. J. of Comp. Vis. 53, 153–167 (2003)CrossRefGoogle Scholar
  23. 23.
    Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415 (1996)CrossRefGoogle Scholar
  24. 24.
    Viswanathan, G.M., Raposo, E.P., da Luz, M.: Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Rev. 5(3), 133–150 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giuseppe Boccignone
    • 1
  • Mario Ferraro
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversitá di MilanoMilanoItaly
  2. 2.Dipartimento di Fisica SperimentaleUniversitá di TorinoTorinoItaly

Personalised recommendations