An Improvement in Feature Feedback Using R-LDA with Application to Yale Database

  • Lang Bach Truong
  • Sang-Il Choi
  • Gu-Min Jeong
  • Jeong-Min Seo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6935)


This paper improves the performance of Feature Feedback and presents its application to face recognition. Feature Feedback has been introduced as a method which focuses on preprocessing the input data before classification. After extracting the features from original, Feature Feedback identifies the important part of the original data through the reverse mapping from the extracted features to the original space. In the feature extraction step, original feature feedback used PCA before LDA to avoid the small sample size problem but it has been shown that this may cause loss of significant discriminatory information. To overcome that problem, in the proposed method, we introduce feature feedback using regularized Fisher’s separability criterion to extract the features and apply it to face recognition using the Yale data. The experimental results show that the proposed method works well.


Feature Feedback Face Recognition Feature Mask 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRefGoogle Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Yu, H., Yang, J.: A direct LDA algorithm for high dimensional data – with application to face recognition. Pattern Recognition 34, 2067–2070 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, L.F., Liao, H.Y.M., Ko, M.T., Lin, J.C., Yu, G.J.: A new LDA- based face recognition system which can solve the small size sample. Pattern Recognition 33, 1713–1726 (2000)CrossRefGoogle Scholar
  6. 6.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition Using LDA Based Algorithms. IEEE Transactions on Neural Networks 14(1), 195–200 (2003)CrossRefGoogle Scholar
  7. 7.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition. Pattern Recognition Letter 26, 181–191 (2005)CrossRefGoogle Scholar
  8. 8.
    Maio, D., Maltoni, D.: A structural approach to fingerprint classification. In: IEEE Int’l Conf. Image Process. (1996)Google Scholar
  9. 9.
    Yang, Y., Ha, S., Kim, Y.: A matched – profile method for simple and robust vapor recognition in electronic nose (E-nose) system. Sensors and Actuators B 106, 263–270 (2005)CrossRefGoogle Scholar
  10. 10.
    Althaniz, P., Goschnick, J., Ehrmann, S., Ache, H.J.: Multisensor, Microsystem for contaminants in air. In: Int’l Conf. Solid – State Sensors and Actuators (1996)Google Scholar
  11. 11.
    Fukunaga, K.: Introduction to Statistical pattern Recognition, 2nd edn. Academic Press, London (1990)zbMATHGoogle Scholar
  12. 12.
    Pang, Y., Zhang, L., Li, M., Liu, Z., Ma, W.: A novel Gabor – LDA based face recognition method. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3331, pp. 352–358. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Kokipoulou, E., Frossard, P.: Classification-specific feature sampling for face recognition. In: IEEE Workshop on Multimedia Signal Processing, pp. 20–23 (2006)Google Scholar
  14. 14.
    Choi, S.-I., Choi, C.-H., Jeong, G.-M.: Pixel selection in a face image based on discriminant features for face recognition. In: IEEE Int’l Conf. Automatic Face and Gesture Recognition (2008)Google Scholar
  15. 15.
    Jeong, G.-M., Ahn, H.-S., Choi, S.-I., Kwak, N.-J., Moon, C.: Pattern Recognition using Feature Feedback: Application to Face Recognition. Internaltional Journal of Control, Automation, and Systems 8, 141–148 (2010)CrossRefGoogle Scholar
  16. 16.
    Choi, S.-I., Kim, S.-H., Yang, Y.-S., Jeong, G.-M.: Data Refinement and Channel Selection for a Portable E-Nose System by the Use of Feature Feedback. Sensors, 10387–10400 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lang Bach Truong
    • 1
  • Sang-Il Choi
    • 2
  • Gu-Min Jeong
    • 1
  • Jeong-Min Seo
    • 3
  1. 1.School of Electrical EngineeringKookmin UniversitySeoulKorea
  2. 2.Dept. of Computer ScienceUniversity of Southern CaliforniaUSA
  3. 3.Dept. of Computer EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations