Data Dissemination Protocol Based on Home Agent and Access Node for Mobile Sink in Mobile Wireless Sensor Networks

  • Joa Hyoung Lee
  • Jae Myung Kim
  • Byung Tae Jang
  • Eun-Ser Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6935)


Achieving efficient data dissemination to a mobile sink moving is one of the main challenges in wireless sensor networks. In this paper, we describe DHA, a data Dissemination protocol based on Home agent and Access node. DHA introduces the home agent and access node concepts to represent the mobile sink in sensor networks. The movement of the mobile sink affects only the access nodes and home agent, and the sensor nodes can transfer data to the fixed home agent without knowing the position of mobile sink. All the sensor nodes except the home agent and access node don’t need to be updated in the direction of forwarding future data. DHA provides reliable and efficient data delivery to a mobile sink with minimum overheads. Our result shows that DHA increases the reliability of data delivery to the mobile sink and reduces the number of broadcast packets, thereby increasing the lifetime of sensor networks.


mobile sink home agent access node sensor network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A Survey. Computer Networks 38, 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Luo, H., Ye, F., Cheng, J., Lu, S., Zhang, L.: TTDD: Two-Tier Data Dissemination in Large-scale Wireless Sensor Networks. ACM Wireless Networks 11, 161–175 (2005)CrossRefGoogle Scholar
  3. 3.
    Kim, H.S., Abdelzaher, T.F.: Minimum-energy Asynchronous Dissemination to Mobile Sinks in Wireless Sensor Networks. In: SenSys 2003, pp. 193–204 (2003)Google Scholar
  4. 4.
    Luo, J., Panchard, J., Piorkowski, M., Grossglauser, M., Hubaux, J.: MobiRoute: Routing Towards a Mobile Sink for Improving Lifetime in Sensor Networks. In: International Conference on Distributed Computing in Sensor Systems, San Francisco, USA, June 18-20, pp. 480–497 (2006)Google Scholar
  5. 5.
    Baruah, P., Urgaonkar, R., Krishnamachari, B.: Learning-Enforced Time Domain Routing to Mobile Sinks in Wireless Sensor Fields. In: LCN 2004, November 16-18, pp. 525–532 (2004)Google Scholar
  6. 6.
    Vass, D., Vincze, Z., Vida, R., Vidács, A.: Energy Efficiency in Wireless Sensor Networks Using Mobile Base Station. In: Proc. of 11th Open European Summer School and IFIP WG6.6, WG6.4, WG6.9 Workshop, Colmenarejo, Spain, July 6-8, pp. 173–186 (2005)Google Scholar
  7. 7.
    Akkaya, K., Younis, M.: Energy-Aware Routing to a Mobile Gateway in Wireless Sensor Networks. Journal of Software 17, 1785–1795 (2006)CrossRefGoogle Scholar
  8. 8.
    Glodenberg, D.K., Lin, J., Morse, A.S., Rosen, B.E., Yang, Y.R.: Towards Mobility as a Network Control Primitive. In: Proceedings of ACM MobiHoc 2004, Roppongi, Japan, pp. 163–173 (2004)Google Scholar
  9. 9.
    Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L., Picco, G.P.: Mobile Data Collection in Sensor Networks: The TinyLime Middleware. Journal of Pervasive and Mobile Computing 4, 446–469 (2005)CrossRefGoogle Scholar
  10. 10.
    Shah, R., Jain, S., Roy, S., Brunette, W.: Data Mules: Modeling a Three-tier Architecture for Sparse Sensor Networks. Tech. Rep. IRS-TR03 -001, Intel Research Seattle (January 2003)Google Scholar
  11. 11.
    Jea, D., Somasundara, A.A., Mani, B.S.: Multiple Controlled Mobile Elements (Data Mules) for Data Collection in Sensor Networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Oapos, T.S., Bacon, D.: Event Dissemination in Mobile Wireless Sensor Networks. In: Mobile Ad-hoc and Sensor Systems 2004, October 25-27, pp. 573–575 (2004)Google Scholar
  13. 13.
    Papadimitriou, I., Georgiadis, L.: Maximum Lifetime Routing to Mobile Sink in Wireless Sensor Networks. In: SoftCOM 2005, Croatia, September 15-17 (2005)Google Scholar
  14. 14.
    Heinzelman, W., Kulik, J., Balakrishnan, H.: Adaptive Protocols for Information Dissemination in Wireless Sensor Networks. In: ACM International Conference on Mobile Computing and Networking, pp. 174–185 (1999)Google Scholar
  15. 15.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diusion: A Scalable and Robust Communication Paradigm for Sensor Networks. In: ACM International Conference on Mobile Computing and Networking, pp. 56–67 (2000)Google Scholar
  16. 16.
    Coffin, D.A., Van Hook, D.J., McGarry, S.M., Kolek, S.R.: Declarative ad-hoc sensor networking. In: Proc. SPIE, pp. 109–120 (2000)Google Scholar
  17. 17.
  18. 18.
  19. 19.
    Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6 (June 2003),
  20. 20.
    Soliman, H.: Mobile IPv6: Mobility in a Wireless Internet. Addison Wesley, Reading (2004)Google Scholar
  21. 21.
    Kim, Y.J., Govindan, R., Karp, B., Schenker, S.: On the Pitfalls of Geographic Face Routing. In: Proceedings of the Third ACM/SIGMOBILE International Workshop on Foundations of Mobile Computing, pp. 34–43 (September 2005)Google Scholar
  22. 22.
    Chen, S., Sheu, Y.: The Broadcast Storm Problem in a Mobile Ad Hoc Network. Wireless Network 8, 153–167 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joa Hyoung Lee
    • 1
  • Jae Myung Kim
    • 1
  • Byung Tae Jang
    • 1
  • Eun-Ser Lee
    • 2
  1. 1.Ship Convergence Platform Research Team, Vechicle-IT Convergence Research Department, IT Convergence Technology Research LaboratoryElectronics and Telecommunications Research InstituteDaejeonKorea
  2. 2.Andong National University Computer EngineeringAndong-citySouth Korea

Personalised recommendations