Advertisement

Private Cloud Computing Techniques for Inter-processing Bioinformatics Tools

  • Tae-Kyung Kim
  • Bo-Kyeng Hou
  • Wan-Sup Cho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6935)

Abstract

Cloud computing is a very attractive alternative to get advantages of high performance data processing and easy management of the complex tools in a bioinformatics area. We present a method, in which computing resources such as existing PCs and small cluster systems can be utilized as private cloud computing infrastructure for an inter-query style of bioinformatics tools. We proposed a private cloud computing environment for bioinformatics applications of inter-processing tasks. Furthermore, we present a metadata repository schema and 6 query routing algorithms on it. We apply proposed algorithms to ClustalW, a multiple sequence alignment tool. Experimental result shows remarkable benefits in a proposed private cloud system in terms of performance and various user requirements.

Keywords

Bioinformatics Infrastructure Bio Cloud System Inter and Intra Query Processing ClustalW 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alex, B., Matt, W.: Cloud Computing. Bioinformatics 25, 1475 (2009)CrossRefGoogle Scholar
  2. 2.
    Ean, J., Ghemawat, S.: MapReduce: simplified data processing on large cluster. In: Proceedings of the 6th Symposium on Operating Systems Design & Implementation, December 6-8, pp. 137–150 (2004)Google Scholar
  3. 3.
    Ohannes, W., Ola, S., Egon, L., Jar, E.S.: XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services. BMC Bioinformatics 10, 279 (2009)CrossRefGoogle Scholar
  4. 4.
    Kim, T., Kim, K., Oh, S., Lee, J., Cho, W.: A Hybrid Grid and Its Application to Clustering Orthologous Groups for Multiple Genomes. In: Berthold, M.R., Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp. 11–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Kim, T., Cho, W.: HyperDB: A PC-Based Database Cluster System for Efficient OLAP Query Processing. In: Proceedings of the 19th IASTED International Conference on Parallel and Distributed Computing and Systems, Cambridge, USA (November 2007)Google Scholar
  6. 6.
    Sergio, G., David, D., Pilar, H., Francisco, J., Juan, A., Cabriel, D.: Next-Generation Bioinformatics: Using Many-Core Processor Architecture to Develop a Web Service for Sequence Alignment. Bioinformatics (January 2010)Google Scholar
  7. 7.
    Thompson, J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)CrossRefGoogle Scholar
  8. 8.
    Apache Hadoop, http://hadoop.apache.org
  9. 9.
    Amazon Simple Storage Service, http://aws.amazon.com/s3/
  10. 10.
    Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
  11. 11.
    Crossbow: Whole Genome Reseqencing using Cloud Computing, http://bowtie-bio.sourceforge.net/crossbow/
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tae-Kyung Kim
    • 1
  • Bo-Kyeng Hou
    • 1
  • Wan-Sup Cho
    • 2
  1. 1.Research Institute of BioScience & BioTechnologyKOBICDaeJeonKorea
  2. 2.Dept. of Management Information Systemsu-BIZ BK21, Chungbuk National UniversityKorea

Personalised recommendations