Genetic Algorithms for Automatic Object Movement Classification

  • Omid David
  • Nathan S. Netanyahu
  • Yoav Rosenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6935)


This paper presents an integrated approach, combining a state-of-the-art commercial object detection system and genetic algorithms (GA)-based learning for automatic object classification. Specifically, the approach is based on applying weighted nearest neighbor classification to feature vectors extracted from the detected objects, where the weights are evolved due to GA-based learning. Our results demonstrate that this GA-based approach is considerably superior to other standard classification methods.


Genetic algorithms Parameter tuning Computer vision Automatic object recognition Movement classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bose, B., Grimson, E.: Improving object classification in far-field video. In: Proceedings of the 2004 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, pp. 181–188 (2004)Google Scholar
  2. 2.
    Chen, L., Feris, R., Zhai, Y., Brown, L., Hampapur, A.: An integrated system for moving object classification in surveillance videos. In: Proceedings of the 5th IEEE International Conference on Advanced Video and Signal based Surveillance, Santa Fe, NM, pp. 52–59 (2008)Google Scholar
  3. 3.
    Cover, T., Hart, P.: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection, In. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, pp. 886–893 (2005)Google Scholar
  5. 5.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)zbMATHGoogle Scholar
  6. 6.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Paredes, R., Vidal, E.: Learning Weighted Metrics to Minimize Nearest-Neighbor Classification Error. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7), 1100–1110 (2006)CrossRefGoogle Scholar
  8. 8.
    Viola, P., Jones, M., Snow, D.: Detecting Pedestrians Using Patterns of Motion and Appearance. International Journal of Computer Vision 63(2), 153–161 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Omid David
    • 1
  • Nathan S. Netanyahu
    • 1
    • 2
  • Yoav Rosenberg
    • 3
  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael
  2. 2.Center for Automation ResearchUniversity of MarylandCollege ParkUSA
  3. 3.ProTrack Ltd.JerusalemIsrael

Personalised recommendations