Skip to main content

Primer of Adaptive Finite Element Methods

  • Chapter
  • First Online:
Book cover Multiscale and Adaptivity: Modeling, Numerics and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2040))

Abstract

Adaptive finite element methods (AFEM) are a fundamental numerical instrument in science and engineering to approximate partial differential equations. In the 1980s and 1990s a great deal of effortwas devoted to the design of a posteriori error estimators, following the pioneering work of Babu?ska. These are computable quantities, depending on the discrete solution(s) and data, that can be used to assess the approximation quality and improve it adaptively. Despite their practical success, adaptive processes have been shown to converge, and to exhibit optimal cardinality, only recently for dimension d > 1 and for linear elliptic PDE. These series of lectures presents an up-to-date discussion of AFEM encompassing the derivation of upper and lower a posteriori error bounds for residual-type estimators, including a critical look at the role of oscillation, the design of AFEM and its basic properties, as well as a complete discussion of convergence, contraction property and quasi- optimal cardinality of AFEM

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth, D. W. Kelly, A posteriori error estimators and adaptivity for finite element approximation of the non-homogeneous Dirichlet problem. Adv. Comput. Math. 15, 3–23 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics (Wiley, New York, 2000)

    Google Scholar 

  3. I. Babuška, R.B. Kellogg, J. Pitk¨aranta, Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)

    Google Scholar 

  4. I. Babuška, A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator. Comput. Methods Appl. Mech. Eng. 61(1), 1–40 (1987)

    MATH  Google Scholar 

  5. I. Babuška, W. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Bänsch, P. Morin, R.H. Nochetto, An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition. SIAM J. Numer. Anal. 40, 1207–1229 (electronic) (2002)

    Google Scholar 

  7. P. Binev, W. Dahmen, R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Binev, W. Dahmen, R. DeVore, P. Petrushev, Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002). Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday

    Google Scholar 

  9. A. Bonito, R.H. Nochetto, Quasi-optimal convergence rate for an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 734–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  11. S. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer Texts in Applied Mathematics, vol. 15 (Springer, New York, 2008)

    Google Scholar 

  12. C. Carstensen, S.A. Funken, Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21, 1465–1484 (1999)

    Article  MathSciNet  Google Scholar 

  13. C. Carstensen, R.H.W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method. Math. Comp. 75, 1033–1042 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. J.M. Cascón, C. Kreuzer, R.H. Nochetto, K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.M. Cascón, R.H. Nochetto, Convergence and quasi-optimality for AFEM based on non-residual a posteriori error estimators. To appear in IMA J. Numer. Anal.

    Google Scholar 

  16. J.M. Cascón, R.H. Nochetto, K.G. Siebert, Design and convergence of AFEM in H.div/. Math. Models Methods Appl. Sci. 17, 1849–1881 (2007)

    Google Scholar 

  17. Z. Chen, J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73, 1167–1042 (2006)

    Article  MathSciNet  Google Scholar 

  18. L. Chen, M. Holst, J. Xu, Convergence and optimality of adaptive mixed finite element methods. Math. Comp. 78, 35–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40, SIAM, (North-Holland, Amsterdam, 2002)

    Google Scholar 

  20. A. Demlow, Convergence of an adaptive finite element method for controlling local energy errors. Submitted for publication

    Google Scholar 

  21. A.. Demlow, R.P. Stevenson, Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors. Submitted for publication

    Google Scholar 

  22. R.A. DeVore, Nonlinear approximation, in Acta Numerica, vol. 7, ed. by A. Iserles (Cambridge University Press, Cambridge, 1998), pp. 51–150.

    Google Scholar 

  23. L. Diening, Ch. Kreuzer, Convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46, 614–638 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Dörfler, M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comp. 67, 1361–1382 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Dupont, L.R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Fierro, A. Veeser, A posteriori error estimators, gradient recovery by averaging, and superconvergence. Numer. Math. 103, 267–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. E.M. Garau, P. Morin, C. Zuppa, Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19, 721–747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Gaspoz, P. Morin, Approximation classes for adaptive higher order finite element approximation. Submitted for publication

    Google Scholar 

  30. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24 (Pitman Advanced Publishing Program, Boston, MA, 1985)

    Google Scholar 

  31. M. Holst, G. Tsogtgerel, Y. Zhu, Local convergence of adaptive methods for nonlinear partial differential equations. Preprint, arXiv:math.NA/1001.1382 (2009)

    Google Scholar 

  32. R.H.W. Hoppe, G. Kanschat, T. Warburton, Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47, 534–550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. O.A. Karakashian, F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45, 641–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.B. Kellogg, On the Poisson equation with intersecting interfaces. Applicable Anal. 4, 101–129 (1974/75)

    Google Scholar 

  35. Ch. Kreuzer, K.G. Siebert, Decay rates of adaptive finite elements with Dörfler marking. Numer. Math. 117, 679–716 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.M. Maubach, Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Mekchay, R.H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (electronic) (2005)

    Google Scholar 

  38. K. Mekchay, P. Morin, R.H. Nochetto, AFEM for the Laplace–Beltrami operator on graphs: design and conditional contraction property. Math. Comp. 80, 625–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. W.F. Mitchell, Unified multilevel adaptive finite element methods for elliptic problems. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana, 1988

    Google Scholar 

  40. P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive finite element methods. SIAM Review 44, 631–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Morin, R.H. Nochetto, K.G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comp. 72, 1067–1097 (electronic) (2003)

    Google Scholar 

  43. P. Morin, K.G. Siebert, A. Veeser, Convergence of finite elements adapted for weak norms, in Applied and Industrial Mathematics in Italy II, Series on Advances in Mathematics for Applied Sciences, vol. 75, ed. by V. Cutello, G. Fotia, L. Puccio, (World Scientific, Singapore, 2007), pp. 468–479

    Google Scholar 

  44. P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Mod. Meth. Appl. Sci. 5, 707–737 (2008)

    Article  MathSciNet  Google Scholar 

  45. R.H. Nochetto, K.G. Siebert, A. Veeser, Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear and Adaptive Approximation (Springer, New York, 2009), pp. 409–542

    Google Scholar 

  46. R.H. Nochetto, A. Schmidt, K.G. Siebert, A. Veeser, Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math. 104, 515–538 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Sacchi, A. Veeser, Locally efficient and reliable a posteriori error estimators for Dirichlet problems. Math. Models Methods Appl. 16, 319–346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  49. K.G. Siebert, A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. (2010), first published online May 30, 2010. doi:10.1093/imanum/drq001 (in this volume)

    Google Scholar 

  50. K.G. Siebert, Mathematically founded design of adaptive finite element software, in Multiscale and Adaptivity: Modeling, Numerics and Applications, CIME-EMS Summer School in Applied Mathematics, ed. by G. Naldi, G. Russo (Springer, New York, 2011), pp. 227–309

    Google Scholar 

  51. K.G. Siebert, A. Veeser, A unilaterally constrained quadratic minimization with adaptive finite elements. SIAM J. Optim. 18, 260–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. C.T. Traxler, An algorithm for adaptive mesh refinement in n dimensions. Computing 59, 115–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Veeser, Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92, 743–770 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Veeser, R. Verf¨urth, Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47, 2387–2405 (2009)

    Google Scholar 

  57. R. Verf¨urth, A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)

    Google Scholar 

  58. R. Verf¨urth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Adv. Numer. Math. John Wiley, Chichester, UK (1996).

    Google Scholar 

  59. H. Wu, Z. Chen, Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Science in China: Series A Mathematics 49, 1–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Xu, L. Chen, R.H. Nochetto, Adaptive multilevel methods on graded bisection grids, in Multiscale, Nonlinear and Adaptive Approximation (Springer, New York, 2009), pp. 599–659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. Nochetto .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nochetto, R.H., Veeser, A. (2011). Primer of Adaptive Finite Element Methods. In: Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics(), vol 2040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24079-9_3

Download citation

Publish with us

Policies and ethics