Skip to main content

Fine-Structure Entanglement: Bipartite States of Flying Particles with Rest Mass Different from Zero

  • Chapter
  • First Online:
Quantum Entanglement in Electron Optics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 67))

  • 1452 Accesses

Abstract

In this chapter, we relax the condition that electrons inside the atomic target \(\mathfrak{T}\), or after leaving it, do not experience any SDIs. Hence, the spin-states of a photoelectron plus a photoion, or of two electrons, are now generated in the presence of both the C + SOIs. A proper description of the physical situation arising from the presence of both of these two important interactions demands [10, 60] that the required density matrices be now calculated in the j-j coupling scheme of angular momenta. This chapter, therefore, first presents a reformulation in j-j coupling of the density matrices for each of the processes of 1-SPI (1.1), 1-DPI (1.2), and 2-DPI (1.3), hitherto calculated in the L-S coupling in the respective Chaps. 4–6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the discussion on page 70 related to (3.40).

  2. 2.

    One can readily write, using either of the definitions (A.26) and (A.27a),

    $$\displaystyle\begin{array}{rcl}{ \rho }^{\mbox{ ($e_{p}$)}}\ =\ \mbox{ Tr}_{{ \mbox{ $\mathfrak{T}$}}^{1+}}\Big({\rho }^{\mbox{ (1-SPI)}}\Big)& & \end{array}$$
    (7.6a)

    and, hence,

    $$\displaystyle\begin{array}{rcl} & & \langle \mu _{p}\,\hat{\boldsymbol{u}}_{p}\,\boldsymbol{k}_{p}{\vert \,\rho }^{\mbox{ ($e_{p}$)}}\,\vert \mu _{p}^{\,{\prime}}\,\hat{\boldsymbol{u}}_{p}\,\boldsymbol{k}_{p}\rangle \\ & & \quad =\displaystyle\sum _{ M_{{ 1}^{+}}=-J_{{1}^{+}}}^{J_{{1}^{+}}}\langle J_{{ 1}^{+}}M_{{1}^{+}};\,\mu _{p}\,\hat{\boldsymbol{u}}_{p}\,\boldsymbol{k}_{p}{\vert \,\rho }^{\mbox{ (1-SPI)}}\,\vert J_{{ 1}^{+}}M_{{1}^{+}};\,\mu _{ p}^{\,{\prime}}\,\hat{\boldsymbol{u}}_{p}\,\boldsymbol{k}_{p}\rangle \end{array}$$
    (7.6b)

    in view of (A.27b). Here, superscript e p means that the density operator and matrix in (7.6a) and (7.6b), respectively, describe only the observed photoelectron.

  3. 3.

    For definition of \(\boldsymbol{j}_{t}\), see, for example, footnote (1) on page 151.

  4. 4.

    In the present case, one has

    $$\displaystyle\begin{array}{rcl}{ \rho }^{\mbox{ (${\mbox{ $\mathfrak{T}$}}^{1+}$)}}\ =\ \displaystyle\int \bigg [\mbox{ Tr}_{e_{ p}}\Big({\rho }^{\mbox{ (1-SPI)}}\Big)\bigg]\,\mbox{ d}\hat{\boldsymbol{k}}_{p}.& & \end{array}$$
    (7.7a)

    The corresponding density matrix is, therefore, given by

    $$\displaystyle\begin{array}{rcl} & & \langle J_{{1}^{+}}M_{{1}^{+}}{\vert \,\rho }^{\mbox{ (${\mbox{ $\mathfrak{T}$}}^{1+}$)}}\,\vert J_{{ 1}^{+}}M_{{1}^{+}}^{\,{\prime}}\rangle \\ & & \quad =\displaystyle\int \Bigg (\displaystyle\sum _{\mu _{ p}=-\frac{1} {2} }^{+\frac{1} {2} }\langle J_{{ 1}^{+}}M_{{1}^{+}};\,\mu _{p}\,\hat{\boldsymbol{u}}_{p}\,\boldsymbol{k}_{p}{\vert \,\rho }^{\mbox{ (1-SPI)}}\,\vert J_{{ 1}^{+}}M_{{1}^{+}}^{\,{\prime}};\,\mu _{ p}^{\,{\prime}}\,\hat{\boldsymbol{u}}_{p}\,\boldsymbol{k}_{p}\rangle \Bigg)\,\mbox{ d}\hat{\boldsymbol{k}}_{p}. \end{array}$$
    (7.7b)

    The superscript \({\mbox{ $\mathfrak{T}$}}^{1+}\), in (7.7), is used to indicate physical quantities related to only the photoion in the process (1.1).

  5. 5.

    For a brief description of circular dichroism, see, for example, footnote (3) in Chap. 11.

  6. 6.

    See footnote (6) on page 39.

  7. 7.

    Partial transpose of a Hermitian matrix is also Hermitian.

  8. 8.

    In the present example of (7.21), each of both Xe and \({\mbox{ Xe}}^{2+}\) is in \(^{1}\mbox{ S}_{0}\) electronic state.

  9. 9.

    It, in other words, means that there is no circular dichroism [see footnote (3) in Chapter 11] in the fine-structure entanglement between the spins of \((e_{p},\,e_{a})\) in the presently being considered experimental geometry (7.22).

References

  1. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

    Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 10 Anv. ed. (Cambridge University Press, Cambridge, England, 2011)

    MATH  Google Scholar 

  3. O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Bouwmeester, A.K. Ekert, A. Zeilinger (eds.), The Physics of quantum Information (Springer, Berlin, 2000)

    MATH  Google Scholar 

  5. G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (eds.), Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, Berlin, 2001)

    MATH  Google Scholar 

  6. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

    Google Scholar 

  7. K. Blum, Density Matrix Theory and Applications, 3rd edn. (Springer, Berlin, 2012)

    Book  Google Scholar 

  8. A. de-Shalit, I. Talmi, Nuclear Shell Theory (Dover, New York, 2004)

    Google Scholar 

  9. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapur, 1988)

    Book  Google Scholar 

  10. R.N. Zare, Angular Momentum (Wiley-Interscience, 1988)

    Google Scholar 

  11. J. Preskill, Quantum Information and Computation (Lecture Notes for ph219/cs219, California Institute of Technology, California, 2 November 2001), Chapter 4, pp.16

  12. M. Horodecki, P. Horodecki, R. Horodecki, in Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, eds. G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (Springer, Berlin, 2001)

    Google Scholar 

  13. N. Chandra, R. Ghosh, Phys. Rev. A 74, 052329 (2006)

    Article  ADS  Google Scholar 

  14. N. Chandra, Phys. Rev. A 42, 4050 (1990)

    Article  ADS  Google Scholar 

  15. S. Parida, N. Chandra, Phys. Rev. A 86, 062302 (2012)

    Article  ADS  Google Scholar 

  16. N. Chandra, M. Chakraborty, J. Phys. B 35, 2219 (2002)

    Article  ADS  Google Scholar 

  17. N. Chandra, Phys. Rev. A 56, 1879 (1997)

    Article  ADS  Google Scholar 

  18. T. Radtke, S. Fritzsche, A. Surzhykov, Phys. Lett. A 347, 73 (2005)

    Article  ADS  Google Scholar 

  19. T. Radtke, S. Fritzsche, A. Surzhykov, Phys. Rev. A 74, 032709 (2006)

    Article  ADS  Google Scholar 

  20. N.A. Cherepkov, Adv. At. Mol. Phys. 19, 395 (1983)

    Article  ADS  Google Scholar 

  21. V.V. Balashov, A.N. Grum-Grzhimailo, N.M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions: A Practical Theory Course (Springer, Germany, 2010)

    Google Scholar 

  22. B. Kämmerling, V. Schmidt, Phys. Rev. Lett. 67, 1848 (1991)

    Article  ADS  Google Scholar 

  23. B. Kämmerling V. Schmidt, J. Phys. B 26, 1141 (1993)

    Article  ADS  Google Scholar 

  24. B. Kämmerling, V. Schmidt, J. Phys. B 25, 3621 (1992)

    Article  ADS  Google Scholar 

  25. B. Schmidtke, M. Drescher, N.A Cherepkov, U. Heinzman, J. Phys. B 33, 2451 (2000)

    Article  ADS  Google Scholar 

  26. W.R. Johnson, K.T. Cheng, Phys. Rev. Lett. 69, 1144 (1992)

    Article  ADS  Google Scholar 

  27. W.R. Johnson, K.T. Cheng, Phys. Rev. A 20, 978 (1979)

    Article  ADS  Google Scholar 

  28. W.R. Johnson, C.D. Lin, Phys. Rev. A 20, 964 (1979)

    Article  ADS  Google Scholar 

  29. S. Wolfram, The Mathematica Book, 4th edn. (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, N., Ghosh, R. (2013). Fine-Structure Entanglement: Bipartite States of Flying Particles with Rest Mass Different from Zero. In: Quantum Entanglement in Electron Optics. Springer Series on Atomic, Optical, and Plasma Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24070-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24070-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24069-0

  • Online ISBN: 978-3-642-24070-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics