Skip to main content

Coulombic Entanglement: Two-Step Double Photoionization of Atoms

  • Chapter
  • First Online:
  • 1433 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 67))

Abstract

Unlike in the previous Chap. 5, an atom or a molecule may lose two of its electrons in two consecutive steps as well (e.g., Fig. 3.1). While its primary ionization (i.e., loss of first electron) is caused from the energy supplied by some external source, the secondary ionization (i.e., emission of second electron) takes place in the rearrangement of electrons resulting from the primary ionization. Such a rearrangement of electrons becomes necessary whenever an inner-shell electron leaves the target in latter’s primary ionization. However, it is equally possible that such a rearrangement may lead to the emission of a photon in place of an electron (e.g., Fig. 3.2). This loss of energy in the form of a photon by, or departure of an electron from, an atom or a molecule due to rearrangement of its constituents is known as spontaneous radiative or non-radiative decay, respectively. The non-radiative decay was first observed by Auger [73, 74, 175, 176, 261]. The secondary ionization is, therefore, also known as Auger decay and the emitted particle called an Auger electron, say, e a. In this monograph, we will consider the primary ionization due only to the absorption of a single photon and, hence, the emitted particle will be known as a photoelectron e p (say).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    According to (5.26), while three of the four eigenvalues of the partial transpose of the Werner state (6.7) are always more than zero for the allowed values ( − 1 ∕ 3  ≤  p  ≤  1) of the mixing parameter, the remaining fourth exactly vanishes for p = 1 ∕ 3. This later one is the same eigenvalue which becomes negative (positive) for p greater (smaller) than 1/3, i.e., decides the entangled/separablecharacter of Werner state.

  2. 2.

    Concurrence can be calculated using the density matrices  (6.10) in (2.46).

  3. 3.

    Calculation of \(\mathcal{E}_{F}\) in the present case requires  [188] merely substitution of the concurrence (6.14) in (2.47).

References

  1. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

    Google Scholar 

  2. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G.M.  D’Ariano, C. Macchiavello, Phys. Rev. Lett. 91, 227901 (2003)

    Article  ADS  Google Scholar 

  3. S. Parida, N. Chandra, R. Ghosh, Eup. Phys. J. D 65, 303 (2011)

    Article  ADS  Google Scholar 

  4. S. Parida, N. Chandra, Phys. Lett. A 373, 1852 (2009); Phys. Rev. A 79, 062501 (2009)

    Article  ADS  Google Scholar 

  5. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

    Google Scholar 

  6. A. de-Shalit, I. Talmi, Nuclear Shell Theory (Dover, New York, 2004)

    Google Scholar 

  7. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1996)

    MATH  Google Scholar 

  8. T.A. Carlson, Photoelectron and Auger Spectroscopy (Plenum, New York, 1975)

    Book  Google Scholar 

  9. P. Auger, Commn. Royal Acad. Sci. Paris 178, 929 (1924)

    Google Scholar 

  10. P. Auger, Commn. Royal Acad. Sci. Paris 178, 1535 (1924)

    Google Scholar 

  11. R.F. Werner, Phys. Rev. A 40, 4277 (1988)

    Article  ADS  Google Scholar 

  12. M. Seevinck, Jos Uffink, Phys. Rev. A 78, 032101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Auger, Commn. Royal Acad. Sci. Paris 182, 776 (1926)

    Google Scholar 

  16. P. Auger, Commn. Royal Acad. Sci. Paris 177, 169 (1923)

    Google Scholar 

  17. N. Chandra, R. Ghosh, Phys. Rev. A 74, 052329 (2006)

    Article  ADS  Google Scholar 

  18. N. Chandra, R. Ghosh, Phys. Rev. A 69, 012315 (2004)

    Article  ADS  Google Scholar 

  19. N. Chandra, R. Ghosh, Rad. Phys. Chem. 75, 1808 (2006)

    Article  ADS  Google Scholar 

  20. R. Ghosh, N. Chandra, S. Parida, Eur. Phys. J. Special Topics 169, 117 (2009)

    Article  ADS  Google Scholar 

  21. T. Pattard, T. Schneider, J.M. Rost, J. Phys. B 36, L189 (2003)

    Article  ADS  Google Scholar 

  22. T. Pattard, J. Burgdörfer, Phys. Rev. A 64, 042720 (2001)

    Article  ADS  Google Scholar 

  23. J.A.R. Samson, Phys. Rev. Lett. 65, 2861 (1990)

    Article  ADS  Google Scholar 

  24. Y. Hikosaka, P. Lablanquie, F. Penent, P. Selles, T. Kaneyasu, E. Shigemasa, J.H.D. Eland, K. Ito, Phys. Rev. A 80, 031404(R) (2009)

    Google Scholar 

  25. P. Auger, J. Phys. Radium 6, 205 (1925)

    Article  Google Scholar 

  26. N. Chandra, R. Ghosh, Phys. Rev. A 70, 060306(R) (2004)

    Google Scholar 

  27. N. Chandra, R. Ghosh, Quant. Inf. Comput. 9, 36 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, N., Ghosh, R. (2013). Coulombic Entanglement: Two-Step Double Photoionization of Atoms. In: Quantum Entanglement in Electron Optics. Springer Series on Atomic, Optical, and Plasma Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24070-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24070-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24069-0

  • Online ISBN: 978-3-642-24070-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics