Skip to main content

Coulombic Entanglement: One-Step Single Photoionization of Atoms

  • Chapter
  • First Online:
Quantum Entanglement in Electron Optics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 67))

Abstract

Photoionization (1.1) is, probably, the simplest among the basic processes in atomic and molecular physics for generating an entangled state of two flying particles one of which is an electronic qubit. It is simplest for two reasons: First, the whole process is completed in a single step; second, it is based on the well-understood physics of photoelectric effect [1] taking place due to the absorption of a single photon γ r in a target \(\mathfrak{T}\) in the E1 approximation. Here, it is obvious from (1.1), the constituents of a bipartite state are the residual photoion \({\mbox{ $\mathfrak{T}$}}^{1+}\) and the photoelectron e p. Unlike the processes (1.2)-(1.8), the incident photon in (1.1) is absorbed by one of the electrons in the outer most shell of \(\mathfrak{T}\) so that the residual photoion \({\mbox{ $\mathfrak{T}$}}^{1+}\) is left in its ground electronic state \(\vert {1}^{+}\rangle\), which is stable against any decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a definition of a qudit, see, for example, pages 22 and 26.

  2. 2.

    If the spin of the residual photoion happens to be zero (i.e.,\(S_{{1}^{+}}\) = 0), the non-local correlation in a \((e_{p},\,{\mbox{ $\mathfrak{T}$}}^{1+})\) pair is then never possible as \({\mbox{ $\mathfrak{T}$}}^{1+}\) can now exists only in a single spin state corresponding to \(M_{S_{{ 1}^{+}}},M_{S_{{1}^{+}}}^{\,{\prime}} = 0\).

  3. 3.

    See, appendix C on pages 269–271.

  4. 4.

    See, appendix C on pages 269–271.

  5. 5.

    See, footnote (2) on page 98.

  6. 6.

    Spin \(\boldsymbol{S}_{{1}^{+}}\) of the photoion \({\mbox{ $\mathfrak{T}$}}^{1+}\) (as well as S ​0 of the atom \(\mathfrak{T}\)) in the 1-SPI process (1.1) is quantized along the polar (i.e., OZ-) axis in Fig. 4.1. It is for this reason that no angles corresponding to the direction of quantization of the \(\boldsymbol{S}_{{1}^{+}}\) and/or S ​0 appear in the density matrix (4.7), or in the subsequent related discussions in the present Chap. 4 of this monograph.

  7. 7.

    In view of the discussion given on pages 40 and 41, the partial transpose\({\sigma }^{T_{{1}^{+}}}(S_{ 0} = 0; S_{1+} = \frac{1} {2}; \hat{\boldsymbol{u}}_{p})\), obtained using (4.11b), of the \((e_{p},\,{\mbox{ $\mathfrak{T}$}}^{1+})\) state (4.13) with respect to the photoion \({\mbox{ $\mathfrak{T}$}}^{1+}\) may, in general, be different from that given in (4.14); but its eigenvalues are necessarily identical to those of \({\sigma }^{T_{p}}\)(S 0 = 0; \(S_{1+} = \frac{1} {2}; \hat{\boldsymbol{u}}_{p}\)) obtained herein.

  8. 8.

    See footnotes (8) and (9) on page  58, respectively.

  9. 9.

    Both [149], concurrence and entanglement of formation, defined in (2.46) and (2.47), respectively, can be calculated for states of two qubits only (see also [168170], etc.).

  10. 10.

    See footnote (2) on page 98.

  11. 11.

    The partial transpose of a diagonal matrix is the matrix itself.

  12. 12.

    See discussion on page 40.

  13. 13.

    See footnote (9) on page 40.

  14. 14.

    Range of a Hermitian matrix is the space spanned by its those eigenvectors which belong to the non-zero eigenvalues of the matrix ([138], footnote (10) on page 161 in [132]). The number of such eigenvectors is equal to the rank [footnote (9) on page  40] of a matrix.

  15. 15.

    In the present case, each of these eigenvectors will, obviously, be a column matrix consisting of 2(2S 1 +  + 1) rows. Although eigenvectors belonging to non-degenerate eigenvalues of a Hermitian matrix are always orthogonal; however, it is not necessarily the case with those belonging to degenerate eigenvalues. Consequently, before using in the expression (4.22) for range, the degenerate eigenvectors need to be orthonormalized using the well-known Gram–Schmidt procedure (explained, for example, on page 62 in [110]).

  16. 16.

    For LOCC, see footnotes (12) and (13) on page 42.

  17. 17.

    Henceforth, unless stated otherwise, distillation of entanglement means its either concentration or purification, as the case may be.

  18. 18.

    See footnote (17).

References

  1. A. Einstein, Annalen der Physik (Leipzig) 17, 132 (1905)

    Article  ADS  Google Scholar 

  2. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

    Google Scholar 

  3. G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (eds.), Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, Berlin, 2001)

    MATH  Google Scholar 

  4. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

    Google Scholar 

  5. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1996)

    MATH  Google Scholar 

  6. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapur, 1988)

    Book  Google Scholar 

  7. G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and Information, Volume I: Basic Concepts (World Scientific, Singapore, 2005)

    MATH  Google Scholar 

  8. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Revs. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  11. L.M. Ioannou, Quant. Inf. Comput. 7, 335 (2007), quant-ph/0603199v7

    Google Scholar 

  12. M. Horodecki, P. Horodecki, R. Horodecki, in Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, eds. G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (Springer, Berlin, 2001)

    Google Scholar 

  13. P. Horodecki, Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Horodecki, M. Lewenstein, G. Vidal, I. Cirac, Phys. Rev. A 62, 03231 (2000)

    Google Scholar 

  15. W.K. Wootters, Quant. Inf. Comput. 1, 27 (2001)

    Google Scholar 

  16. M.A. Nielson, Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  17. F. Mintert, A.R.R. Carvalho, M. Kus, A. Buchleitner, Phys. Rep. 415, 207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. C.H. Bennett, D.P. DiVincenzo, J. Smolin, W.K. Wooters, Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Mintert, A. Buchleitner, Phys. Rev. Lett. 98, 140505 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. C.-J. Zhang, Y.-X. Gong, Y.-S. Zhang, G.-C. Guo, Phys. Rev. A 78, 042308 (2008)

    Article  ADS  Google Scholar 

  21. E.U. Condon, R. Shortley, The Theory of Atomic Spectra, (Cambridge at the University Press, England, 1970)

    MATH  Google Scholar 

  22. I.I. Sobelman, Atomic Spectra and Radiative Transitions, 2nd ed. (Springer, Germany, 1992)

    Book  Google Scholar 

  23. M. Horodecki, R. Horodecki, Quant. Inf. Comput. 1, 45 (2001)

    Google Scholar 

  24. S. Parida, N. Chandra, Phys. Rev. A 86, 062302 (2012)

    Article  ADS  Google Scholar 

  25. A.F. Starace, Handbuch der Physik 31, 1 (1982)

    ADS  Google Scholar 

  26. Y.S. Kim, Y.J. Kim, R.H. Pratt, Phys. Scr. T110, 79 (2004)

    Article  ADS  Google Scholar 

  27. P. Horodecki, J. Smolin, B. Terhal, A. Tnhaplyial, quant-ph/99101222

    Google Scholar 

  28. D. Bruβ, A. Peres, Phys. Rev. A 61, 030301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996), ibid 78, 2031 (1997)

    Article  ADS  Google Scholar 

  30. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  31. M. Murao, M.B. Plenio, S. Popescu, V. Vederal, P.L. Knight Phys. Rev. A 57, 4075 (1998)

    Article  Google Scholar 

  32. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  33. S.J. van Enk, J.I. Cirac, P. Zoller, Science 279, 205 (1998)

    Article  ADS  Google Scholar 

  34. D. Jonathan, M.B. Plenio, Phys. Rev. Lett. 83, 1455 (1999)

    Article  ADS  Google Scholar 

  35. G. Vidal, Phys. Rev. Lett. 83, 1046 (1999)

    Article  ADS  Google Scholar 

  36. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 78, 574 (1997)

    Article  ADS  Google Scholar 

  37. P. Horodecki, M. Horodecki, R. Horodecki, Phys. Rev. Lett. 82, 1056 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  38. C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Phys. Rev. Lett. 82, 5385 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Piani, Phys. Rev. A 73, 012345 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, N., Ghosh, R. (2013). Coulombic Entanglement: One-Step Single Photoionization of Atoms. In: Quantum Entanglement in Electron Optics. Springer Series on Atomic, Optical, and Plasma Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24070-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24070-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24069-0

  • Online ISBN: 978-3-642-24070-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics