Skip to main content

Introduction and Preliminaries

  • Chapter
  • First Online:
Book cover Quantum Entanglement in Electron Optics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 67))

  • 1478 Accesses

Abstract

The year 2005, under the auspices of the United Nations Organization (UNO), was celebrated as the International (or World) Year of Physics. It was as much in the memory of that Annus Mirabilis (Miracle Year) of 1905 in which Albert Einstein published his five famous papers [1–5] more than a century ago, as to honor their author himself by the whole world together. We now know the profound effects those five papers [1–5] have had not only on the development of science, in general, and physics, in particular; but also on the evolution, through these developments, of the human civilization we are enjoying today. One [1] of the five papers which Einstein wrote in the Annus Mirabilis, provided an explanation of the experimentally observed photoelectric effect [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, pages 15–22 in Chap. 2 for a detailed description of a qubit.

  2. 2.

    It is active manipulation of the spin degree of freedom of electrons in a solid-state environment.

  3. 3.

    For its brief description, see Appendix C on pages 269–271.

  4. 4.

    For its brief description, see Appendix C on pages 269–271.

  5. 5.

    Quantum informatic properties of three electrons produced in the photon-induced processes [(1.6),(1.7)] have also been investigated [56, 57], but have not been discussed in this monograph.

  6. 6.

    See footnote (8) on page 58.

  7. 7.

    It is shown in Chap. 8 that there cannot exist any Coulombic entanglement between spin of photoelectron e p and polarization of photon γ d emitted sequentially in the process (1.4).

References

  1. A. Einstein, Annalen der Physik (Leipzig) 17, 132 (1905)

    ADS  Google Scholar 

  2. A. Einstein, Annalen der Physik (Leipzig) 18, 639 (1905)

    ADS  Google Scholar 

  3. H.R. Hertz, Annalen der Physik (Berlin) 267, 983 (1887)

    ADS  Google Scholar 

  4. P. Lenard, Annalen der Physik (Leipzig) 8, 149 (1902)

    ADS  Google Scholar 

  5. A.H. Compton, Phys. Rev. 21, 483 (1923)

    ADS  Google Scholar 

  6. M. Planck, Verh. Dtsch. Phys. Ges. 2, 237 (1900)

    Google Scholar 

  7. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

    Google Scholar 

  8. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    ADS  Google Scholar 

  9. J.S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1965), reprinted in Speakable and non-Speakable in Quantum Mechanics, 2nd ed. (Cambridge University Press, Cambridge, England, 2004), pp. 14; in Foundations of Quantum Mechanics, ed. B. d’Espagnat (Academic Press, New York, 1971), pp. 171

    Google Scholar 

  10. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Google Scholar 

  11. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters Phys. Rev. Lett. 70, 1895 (1993)

    ADS  Google Scholar 

  12. E. Ekert, R. Jozsa, Revs. Mod. Phys. 68, 733 (1996)

    ADS  Google Scholar 

  13. A. Steane, Reps. Prog. Phys. 61, 117 (1998)

    ADS  MathSciNet  Google Scholar 

  14. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 10 Anv. ed. (Cambridge University Press, Cambridge, England, 2011)

    MATH  Google Scholar 

  15. B. Schumacher, Phys. Rev. A 51, 2738 (1995)

    ADS  MathSciNet  Google Scholar 

  16. J.G. Rarity, P.R. Tapster, Phys. Rev. Lett. 64, 2495 (1990)

    ADS  Google Scholar 

  17. P.R. Tapster, J.G. Rarity, P.C.M. Owen, Phys. Rev. Lett. 73, 1923 (1994)

    ADS  Google Scholar 

  18. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, New York, 1997)

    Google Scholar 

  19. A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982)

    ADS  MathSciNet  Google Scholar 

  20. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)

    ADS  Google Scholar 

  21. T. Haji-Hassan, A. J. Duncan, W. Perrie, H. Kleinpoppen, E. Merzbacher, Phys. Rev. Lett. 62, 237 (1989)

    ADS  Google Scholar 

  22. V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, England, 1992)

    MATH  Google Scholar 

  23. C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmermann, Revs. Mod. Phys. 52, 341 (1980)

    ADS  Google Scholar 

  24. D. Loss, D.P. DiVicenzo, Phys. Rev. A 57, 120 (1998)

    ADS  Google Scholar 

  25. D. Bouwmeester, A.K. Ekert, A. Zeilinger (eds.), The Physics of quantum Information (Springer, Berlin, 2000)

    MATH  Google Scholar 

  26. D.P. DiVicenzo, Science 270, 255 (1995)

    ADS  MathSciNet  Google Scholar 

  27. S. Das Sarma, J. Fabian, X. Hu, I. \(\check{\mathrm{Z}}\)utić, Solid State Commun. 119, 207 (2001)

    Google Scholar 

  28. I. \(\check{\mathrm{Z}}\)utić, J. Fabian, S. Das Sarma, Revs. Mod. Phys. 76,323 (2004)

    Google Scholar 

  29. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)

    ADS  Google Scholar 

  30. P. Recher, E.V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)

    ADS  Google Scholar 

  31. P. Recher, D. Loss, Phys. Rev. B 65, 165327 (2002)

    ADS  Google Scholar 

  32. D.S. Saraga, D. Loss, Phys. Rev. Lett. 90, 166803 (2003)

    ADS  Google Scholar 

  33. G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (eds.), Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, Berlin, 2001)

    MATH  Google Scholar 

  34. M. Murao, D. Jonathan, M.B. Plenio, V. Vederal, Phys. Rev. A 59, 156 (1999)

    ADS  Google Scholar 

  35. R. Cleve, H. Buhrman, Phys. Rev. A 56, 1201 (1997)

    ADS  Google Scholar 

  36. P.J. dos Reis, S.S. Sharma, Phys. Rev. A 79, 012326 (2009)

    ADS  Google Scholar 

  37. W. Son, M.S. Kim, J. Lee, D. Ahn, J. Mod. Opt. 49, 1739 (2002)

    ADS  Google Scholar 

  38. H.-Fu Wang, X.-Q. Shao, Y.-F. Zhao, S. Zhang, K.-H. Yeon, J. Phys. B 42, 175506 (2009)

    ADS  Google Scholar 

  39. C. Cabrillo, J.I. Cirac, P. García-Fernández, P. Zoller, Phys. Rev. A 59, 1025 (1999)

    ADS  Google Scholar 

  40. XuBo Zou, K. Pahlke, and W. Mathis, Phys. Rev. A 69, 052314 (2004)

    Google Scholar 

  41. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    ADS  Google Scholar 

  42. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H.S. Ribeiro, L. Davidovich, Science 316, 579 (2007)

    ADS  Google Scholar 

  43. O.J. Farías, C.L. Latune, S.P. Walborn, L. Davidovich, P.H.S. Ribeiro, Science 324, 1414 (2009)

    ADS  Google Scholar 

  44. S. Parida, N. Chandra, R. Ghosh, Eup. Phys. J. D 65, 303 (2011)

    ADS  Google Scholar 

  45. S. Parida, N. Chandra, Phys. Lett. A 373, 1852 (2009); Phys. Rev. A 79, 062501 (2009)

    ADS  Google Scholar 

  46. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Vol. I & II (John Wiley, New York, 1978)

    MATH  Google Scholar 

  47. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

    Google Scholar 

  48. K. Blum, Density Matrix Theory and Applications, 3rd edn. (Springer, Berlin, 2012)

    MATH  Google Scholar 

  49. U. Fano, Revs. Mod. Phys. 29, 74 (1957)

    ADS  Google Scholar 

  50. D.M. Brink, G.R. Satchler, Angular Momentum, 3rd ed. (Oxford University Press, Oxford, 1994)

    MATH  Google Scholar 

  51. R.N. Zare, Angular Momentum (Wiley-Interscience, 1988)

    Google Scholar 

  52. M. Mizushima, Theory of Rotating Diatomic Molecules (Wiley, 1975)

    Google Scholar 

  53. M. Tinkham, Group Theory and Quantum Mechanics (Dover, 2003)

    Google Scholar 

  54. T.A. Carlson, Photoelectron and Auger Spectroscopy (Plenum, New York, 1975)

    Google Scholar 

  55. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957)

    MATH  Google Scholar 

  56. P. Auger, Commn. Royal Acad. Sci. Paris 178, 929 (1924)

    Google Scholar 

  57. P. Auger, Commn. Royal Acad. Sci. Paris 178, 1535 (1924)

    Google Scholar 

  58. J. Xie, R.N. Zare, J. Chem. Phys. 93, 3033 (1990)

    ADS  Google Scholar 

  59. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, N., Ghosh, R. (2013). Introduction and Preliminaries. In: Quantum Entanglement in Electron Optics. Springer Series on Atomic, Optical, and Plasma Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24070-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24070-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24069-0

  • Online ISBN: 978-3-642-24070-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics