Skip to main content

A Closed Form Algorithm for Superresolution

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6939))

Included in the following conference series:

Abstract

Superresolution is a term used to describe the generation of high-resolution images from a sequence of low-resolution images. In this paper an algorithm proposed in 2010, which gets superresolution images through Bayeasian approximate inference using a Markov chain Monte Carlo (MCMC) method, is revised. From the original equations, a closed form to calculate the high resolution image is derived, and a new algorithm is thus proposed. Several simulations, from which two results are here presented, show that the proposed algorithm performs better, in comparison with other superresolution algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsai, R.Y., Huang, T.S.: Multiframe image restoration and registration. In: Tsai, R.Y., Huang, T.S. (eds.) Advances in Computer Vision and Image Processing, vol. 1, pp. 317–339. JAI Press Inc., Greenwich (1984)

    Google Scholar 

  2. Tekalp, A.M., Ozkan, M.K., Sezan, M.I.: High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration. In: ICASSP, San Francisco, vol. III, pp. 169–172 (1992)

    Google Scholar 

  3. Kim, S.P., Bose, N.K., Valenzuela, H.M.: Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans. ASSP 38(6), 1013–1027 (1990)

    Article  Google Scholar 

  4. Kim, S.P., Su, W.-Y.: Recursive high-resolution reconstruction of blurred multiframe images. IEEE Trans. IP 2, 534–539 (1993)

    Google Scholar 

  5. Bose, N.K., Kim, H.C., Valenzuela, H.M.: Recursive Total Least Squares Algorithm for Image Reconstruction from Noisy, Undersampled Multiframes. Multidimensional Systems and Signal Processing 4(3), 253–268 (1993)

    Article  MATH  Google Scholar 

  6. Borman, S., Stevenson, R.L.: Super-Resolution from Image Sequences - A Review. In: Midwest Symposium on Circuits and Systems (1998)

    Google Scholar 

  7. Komatsu, T., Igarashi, T., Aizawa, K., Saito, T.: Very high resolution imaging scheme with multiple different aperture cameras. Signal Processing Image Communication 5, 511–526 (1993)

    Article  Google Scholar 

  8. Irani, M., Peleg, S.: Motion analysis for image enhancement: Resolution, occlusion and transparency. Journal of Visual Communications and Image Representation 4, 324–335 (1993)

    Article  Google Scholar 

  9. Patti, A.J., Sezan, M.I., Tekalp, A.M.: Superresolution Video Reconstruction with Arbitrary Sampling Lattices and Nonzero Aperture Time. IEEE Trans. IP 6(8), 1064–1076 (1997)

    Google Scholar 

  10. Tom, B.C., Katsaggelos, A.K.: An Iterative Algorithm for Improving the Resolution of Video Sequences. In: SPIE VCIP, Orlando, vol. 2727, pp. 1430–1438 ( March 1996)

    Google Scholar 

  11. Eren, P.E., Sezan, M.I., Tekalp, A.: Robust, Object-Based High-Resolution Image Reconstruction from Low-Resolution Video. IEEE Trans. IP 6(10), 1446–1451 (1997)

    Google Scholar 

  12. Hong, M.-C., Kang, M.G., Katsaggelos, A.K.: A regularized multichannel restoration approach for globally optimal high resolution video sequence. In: SPIE VCIP, San Jose, vol. 3024, pp. 1306–1316 (February 1997)

    Google Scholar 

  13. Schultz, R.R., Stevenson, R.L.: Extraction of high-resolution frames from video sequences. IEEE Trans. IP 5(6), 996–1011 (1996)

    Google Scholar 

  14. Cheeseman, P., Kanefsky, B., Kraft, R., Stutz, J., Hanson, R.: Super-resolved surface reconstruction from multiple images. In: Maximum Entropy and Bayesian Methods, pp. 293–308. Kluwer, Santa Barbara (1996)

    Chapter  Google Scholar 

  15. Hardie, R.C., Barnard, K.J., Armstrong, E.E.: Joint MAP Registration and High-Resolution Image Estimation Using a Sequence of Undersampled Images. IEEE Trans. IP 6(12), 1621–1633 (1997)

    Google Scholar 

  16. Tom, B.C., Katsaggelos, A.K.: Reconstruction of a high resolution image from multiple degraded mis-registered low resolution images. In: SPIE VCIP, Chicago, vol. 2308, pp. 971–981 (September 1994)

    Google Scholar 

  17. Tipping, M.E., Bishop, C.M.: Bayesian image super-resolution. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Nueral Information Processing Systems, vol. 15. MIT Press, Cambridge (2003)

    Google Scholar 

  18. Tian a, J., Ma, K.-K.: Stochastic super-resolution image reconstruction. J. Vis. Commun. Image R, R 21, 232–244 (2010)

    Article  Google Scholar 

  19. Vandewalle, P., Susstrunk, S., Vetterli, M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Applied Signal Processing (2006)

    Google Scholar 

  20. Pham, T.Q., van Vliet, L.J., Schutte, K.: Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP Journal on Applied Signal Processing (2006)

    Google Scholar 

  21. Li, S.Z.: Markov Random Field Modeling in Computer Vision. Springer, New York (1995)

    Book  Google Scholar 

  22. Rue, H.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall, Boca Raton (2005)

    Book  MATH  Google Scholar 

  23. Galatsanos, N.P., Mesarovic, V.Z., Molina, R., Katsaggelos, A.K.: Hierarchical Bayesian image restoration from partially known blurs. IEEE Transactions on Image Processing 9, 1784–1797 (2000)

    Article  Google Scholar 

  24. Figueiredo, M., Nowak, R.: Wavelet-based image estimation: an empirical Bayes approach using Jeffreys’ noninformative prior. IEEE Transactions on Image Processing 10, 1322–1331 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bishop Christopher, M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  26. He, Y., Yap, K.-H., Chen, L., Chau, L.-P.: A soft MAP framework for blind superresolution image reconstruction. Image and Vision Computing 27, 364–373 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Camponez, M.O., Salles, E.O.T., Sarcinelli-Filho, M. (2011). A Closed Form Algorithm for Superresolution. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24031-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24030-0

  • Online ISBN: 978-3-642-24031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics