Skip to main content

Multi-View Stereo Point Clouds Visualization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6938))

Abstract

3D reconstruction from image sequences using multi-view stereo (MVS) algorithms is an important research area in computer vision and has multitude of applications. Due to its image-feature-based analysis, 3D point clouds derived from such algorithms are irregularly distributed and can be sparse at plain surface areas. Noise and outliers also degrade the resulting 3D clouds. Recovering an accurate surface description from such cloud data thus requires sophisticated post processing which can be computationally expensive even for small datasets. For time critical applications, plausible visualization is preferable. We present a fast and robust method for multi-view point splatting to visualize MVS point clouds. Elliptical surfels of adaptive sizes are used for better approximating the object surface, and view-independent textures are assigned to each surfel according to MRF-based energy optimization. The experiments show that our method can create surfel models with textures from low-quality MVS data within seconds. Rendering results are plausible with a small time cost due to our view-independent texture mapping strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: Proc. CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  2. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: Proc. ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  3. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. In: Proc. VVS 1992, pp. 75–82 (1992)

    Google Scholar 

  4. Amenta, N., Bern, M., Kamvysselis, M.: A new voronoi-based surface reconstruction algorithm. In: Proc. SIGGRAPH 1998, pp. 415–421 (1998)

    Google Scholar 

  5. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proc. SMA 2001, pp. 249–266 (2001)

    Google Scholar 

  6. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proc. SIGGRAPH 1994, pp. 295–302 (1994)

    Google Scholar 

  7. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proc. SIGGRAPH 1999, pp. 335–342 (1999)

    Google Scholar 

  8. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proc. SIGGRAPH 2001, pp. 67–76 (2001)

    Google Scholar 

  9. Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit surface fitting. In: Proc. SIGGRAPH 2004, pp. 609–612 (2004)

    Google Scholar 

  10. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Visual. Comput. Graph. 9, 3–15 (2003)

    Article  Google Scholar 

  11. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proc. VLSM 2001, pp. 194–201 (2001)

    Google Scholar 

  12. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. SGP 2006, pp. 61–70 (2006)

    Google Scholar 

  13. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proc. SIGGRAPH 2000, pp. 335–342 (2000)

    Google Scholar 

  14. Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface splatting. In: Proc. SIGGRAPH 2001, pp. 371–378 (2001)

    Google Scholar 

  15. Goesele, M., Ackermann, J., Fuhrmann, S., Haubold, C., Klowsky, R., Steedly, D., Szeliski, R.: Ambient point clouds for view interpolation. In: Proc. SIGGRAPH 2010, pp. 95:1–95:6 (2010)

    Google Scholar 

  16. Shum, H.Y., Chan, S.C., Kang, S.B.: Image-Based Rendering. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  17. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. In: Proc. SIGGRAPH 1996, pp. 11–20 (1996)

    Google Scholar 

  18. Yang, R., Guinnip, D., Wang, L.: View-dependent textured splatting. The Visual Computer 22, 456–467 (2006)

    Article  Google Scholar 

  19. Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In: Proc. CVPR 2007, pp. 1–6 (2007)

    Google Scholar 

  20. Welch, B.L.: The generalization of “student’s” problem when several different population variances are involved. Biometrika 34, 28–35 (1947)

    MathSciNet  MATH  Google Scholar 

  21. Struik, D.J.: Lectures on Classical Differential Geometry. Addison-Wesley, Reading (1950)

    MATH  Google Scholar 

  22. Che, W., Paul, J.C., Zhang, X.: Lines of curvature and umbilical points for implicit surfaces. Computer Aided Geometric Design 24, 395–409 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  24. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1124–1137 (2004)

    Article  MATH  Google Scholar 

  25. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–159 (2004)

    Article  Google Scholar 

  26. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting on today’s gpus. In: Proc. PBG 2005, pp. 17–141 (2005)

    Google Scholar 

  27. Chen, C.I., Sargent, D., Tsai, C.M., Wang, Y.F., Koppel, D.: Stabilizing stereo correspondence computation using delaunay triangulation and planar homography. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 836–845. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45, 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Photofly, A., http://labs.autodesk.com/technologies/photofly/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gong, Y., Wang, YF. (2011). Multi-View Stereo Point Clouds Visualization. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24028-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24027-0

  • Online ISBN: 978-3-642-24028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics