Skip to main content

Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation

  • Conference paper
  • First Online:
Competence in High Performance Computing 2010

Abstract

Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylindrical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verschaffelt, J.E.: Bulletin de l’Académie Royale de Belgique: Classe de Sciences 22(4), 373 (1936)

    Google Scholar 

  2. Gibbs, J.W.: American Journal of Science: Series 3 16, 441 (1878)

    Google Scholar 

  3. Guggenheim, E.A.: Transactions of the Faraday Society 35, 397 (1940)

    Article  Google Scholar 

  4. Tolman, R.C.: Journal of Chemical Physics 17(3), 333 (1949)

    Article  Google Scholar 

  5. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids (Clarendon, Oxford, 1987)

    MATH  Google Scholar 

  6. Vrabec, J., Kedia, G.K., Fuchs, G., Hasse, H.: Molecular Physics 104(9), 1509 (2006)

    Article  Google Scholar 

  7. Hołyst, R., Litniewski, M.: Physical Review Letters 100, 055701 (2008)

    Article  Google Scholar 

  8. van Meel, J.A., Page, A.J., Sear, R.P., Frenkel, D.: Journal of Chemical Physics 129, 204505 (2008)

    Article  Google Scholar 

  9. Block, B.J., Das, S.K., Oettel, M., Virnau, P., Binder, K.: Journal of Chemical Physics 133, 154702 (2010)

    Article  Google Scholar 

  10. Horsch, M., Vrabec, J., Hasse, H.: Physical Review E 78, 011603 (2008)

    Article  Google Scholar 

  11. Horsch, M., Vrabec, J.: Journal of Chemical Physics 131, 184104 (2009)

    Article  Google Scholar 

  12. Horsch, M., Heitzig, M., Dan, C., Harting, J., Hasse, H., Vrabec, J.: Langmuir 26(13), 10913 (2010)

    Article  Google Scholar 

  13. Horsch, M., Lin, Z., Windmann, T., Hasse, H., Vrabec, J.: Atmos. Res. 101(3), 519 (2011)

    Article  Google Scholar 

  14. Buff, F.P.: Journal of Chemical Physics 23(3), 419 (1955)

    Article  Google Scholar 

  15. Kondo, S.: Journal of Chemical Physics 25(4), 662 (1956)

    Article  Google Scholar 

  16. Young, T.: Philosophical Transactions of the Royal Society 95, 65 (1805)

    Article  Google Scholar 

  17. Napari, I., Julin, J., Vehkamäki, H.: Journal of Chemical Physics 131, 244511 (2009)

    Article  Google Scholar 

  18. Laaksonen, A., Ford, I.J., Kulmala, M.: Physical Review E 49(6), 5517 (1994)

    Article  Google Scholar 

  19. Bernreuther, M., Vrabec, J.: In: High Performance Computing on Vector Systems, Resch, M. et al. (Eds.) pp. 187–195. Springer, Heidelberg (2006); ISBN 3-540-29124-5

    Google Scholar 

  20. ten Wolde, P.R., Frenkel, D.: Journal of Chemical Physics 109, 9901 (1998)

    Article  Google Scholar 

  21. Volmer, M., Weber, A.: Zeitschrift für physikalische Chemie (Leipzig) 119, 277 (1926)

    Google Scholar 

  22. Farkas, L.: Zeitschrift für physikalische Chemie (Leipzig) 125, 236 (1927)

    Google Scholar 

  23. Wedekind, J., Hyvärinen, A.P., Brus, D., Reguera, D.: Physical Review Letters 101, 125703 (2008)

    Article  Google Scholar 

  24. Feder, J., Russell, K.C., Lothe, J., Pound, G.M.: Advances in Physics 15(1), 111 (1966)

    Article  Google Scholar 

  25. Zel’dovič, Â.B.: Žurnal Èksperimental’noj i Teoretičeskoj Fiziki 12, 525 (1942)

    Google Scholar 

  26. Buchholz, M., Bungartz, H.-J., Vrabec, J.: J. Comput. Sci. 2(2), 124 (2011)

    Article  Google Scholar 

  27. Yasuoka, K., Matsumoto, M.: Journal of Chemical Physics 109(19), 8451 (1998)

    Article  Google Scholar 

  28. McDonald, J.E.: American Journal of Physics 31, 31 (1963)

    Article  Google Scholar 

  29. Vrabec, J., Stoll, J., Hasse, H.: Journal of Physical Chemistry B 105(48), 12126 (2001)

    Article  Google Scholar 

  30. Huang, Y.L., Vrabec, J., Hasse, H.: Fluid Phase Equilibria 287(1), 62 (2009)

    Article  Google Scholar 

  31. Vrabec, J., Kedia, G.K., Buchhauser, U., Meyer-Pitroff, R., Hasse, H.: Cryogenics 49, 72 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank J. Harting, H. Hasse, E.Y. Kenig, and G. Reina for their support and for valuable discussions. The present work, which contributes to the BMBF project IMEMO, was conducted under the auspices of the Boltzmann-Zuse Society of Computational Molecular Engineering (BZS). Major aspects of it were facilitated by the reliable technical assistance of M. Heitzig and Z. Lin. The position of M.T. Horsch at Imperial College London is funded by the DAAD postdoc programme, and computations were performed at the High Performance Computing Center Stuttgart (HLRS) with resources assigned to the grant MMHBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vrabec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horsch, M.T. et al. (2011). Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation. In: Bischof, C., Hegering, HG., Nagel, W., Wittum, G. (eds) Competence in High Performance Computing 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24025-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24025-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24024-9

  • Online ISBN: 978-3-642-24025-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics