Using Knowledge Integration Techniques for User Profile Adaptation Method in Document Retrieval Systems

  • Bernadetta Mianowska
  • Ngoc Thanh Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6910)


Knowledge integration is a very important and useful technique to combine information from different sources and different formats. In the Information Retrieval field, integration of knowledge can be understood in many ways. In this paper a method of user personalization in information retrieval using integration technique is presented. As user delivers new knowledge about himself, this knowledge should be integrated with previous knowledge contained in the user profile. Our proposed method is analyzed in terms of integration postulates. A list of desirable properties of this method and its proofs are presented. Simulated experimental evaluation has shown that proposed method is effective and the updated profile is proper since it is closer and closer to the user preferences.


knowledge integration postulates user profile adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A., Nygard, M.: Different roles and mutual dependencies of data, information, and knowledge - An AI perspective on their integration. Data & Knowledge Engineering 16, 191–222 (1995)CrossRefGoogle Scholar
  2. 2.
    Abecker, A., Decker, S.: Organizational Memory: Knowledge Acquisition, Integration, and Retrieval Issues. In: Puppe, F. (ed.) XPS 1999. LNCS (LNAI), vol. 1570, pp. 113–124. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bae, J.K., Kim, J.: Integration of heterogeneous models to predict consumer behavior. Expert Systems with Applications 37, 1821–1826 (2010)CrossRefGoogle Scholar
  4. 4.
    Barthelemy, J.P.: The Median Procedure for n-Trees. Journal of Classification 3, 329–334 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brewka, G., Eiter, T.: From Data Integration towards Knowledge Mediation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 610–612. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Chen, Y.J.: Knowledge integration and sharing for collaborative molding product design and process development. Computers in Industry 61, 659–675 (2010)CrossRefGoogle Scholar
  7. 7.
    Cohen, W.W.: Integration of Heterogeneous Databases Without Common Domains Using Queries Based on Textual Similarity. ACM SIGMOD Record Homepage 27(2) (1998)Google Scholar
  8. 8.
    Conesa, J., Storey, V.C., Sugumaran, V.: Improving web-query processing through semantic knowledge. Data & Knowledge Engineering 66, 18–34 (2008)CrossRefGoogle Scholar
  9. 9.
    Daniłowicz, C.: Models of Information Retrieval Systems with Special Regard to Users’ Preferences. Scientific Papers of the Main Library and Scientific Information Center of the Wrocław University of Technology, No.6 Monographs, No.3 Wrocław (1992)Google Scholar
  10. 10.
    Ding, H.: Towards the Metadata Integration Issues in Peer-to-Peer Based Digital Libraries. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC 2004. LNCS, vol. 3251, pp. 851–854. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Dingming, W., Dongyan, Z., Xue, Z.: An Adaptive User Profile Based on Memory Model. In: The Ninth International Conference on Web-Age Information Management. IEEE, Los Alamitos (2008)Google Scholar
  12. 12.
    Jlaiel, N., Ben Ahmed, M.: Ontology and Agent Based Model for Software Development Best Practices’ Integration in a Knowledge Management System. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1028–1037. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: Clustering XML Schemas for Effective Integration. In: CIKM 2002, McLean, Virginia, USA, November 4-9 (2002)Google Scholar
  14. 14.
    Main Library and Scientific Information Centre in Wroclaw University of Technology,
  15. 15.
    Merugu, S., Ghosh, J.: A Distributed Learning Framework for Heterogeneous Data Sources. In: KDD 2005, Chicago, Illinois, USA, August 21-24 (2005)Google Scholar
  16. 16.
    Maleszka, M., Mianowska, B., Nguyen, N.T.: Agent Technology for Information Retrieval in Internet. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 151–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Mianowska, B., Nguyen, N.T.: A Framework of an Agent-Based Personal Assistant for Internet Users. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 163–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Mianowska, B., Nguyen, N.T.: A Method of User Modeling and Relevance Simulation in Document Retrieval Systems. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS (LNAI), vol. 6682, pp. 138–147. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Mianowska, B., Nguyen, N.T.: A Method for User Profile Adaptation in Document Retrieval. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS (LNAI), vol. 6592, pp. 181–192. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Mitchell, T.: Machine Learning. McGraw Hill, Singapore (1997)zbMATHGoogle Scholar
  21. 21.
    Myaeng, S.H., Korfhage, R.R.: Integration of User Profiles: Models and Experiments in Information Retrieval. Information Processing & Management 26, 719–738 (1990)CrossRefGoogle Scholar
  22. 22.
    Nguyen, N.T.: Advanced Information and Knowledge Processing. Springer, London (2008)Google Scholar
  23. 23.
    Nemati, H.R., Steiger, D.M., Iyer, M.S., Herschel, R.T.: Knowledge warehouse: an architectural integration of knowledge management, decision support, artificial intelligence and data warehousing. Decision Support Systems 33, 143–161 (2002)CrossRefGoogle Scholar
  24. 24.
    Riaño, D., Moreno, A., Isern, D., Bocio, J., Sánchez, D., Jiménez, L.: Knowledge Exploitation from the Web. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2004. LNCS (LNAI), vol. 3336, pp. 175–185. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Rocchio, J.J.: Relevance Feedback in Information Retrieval. In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  26. 26.
    Suzuki, Y., Hatano, K., Yoshikawa, M., Uemura, S., Kawagoe, K.: A Relevant Score Normalization Method Using Shannon’s Information Measure. In: Fox, E.A., Neuhold, E.J., Premsmit, P., Wuwongse, V. (eds.) ICADL 2005. LNCS, vol. 3815, pp. 311–316. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    WordNet, A lexical database for English,
  28. 28.
    Yearwood, J., Stranieri, A.: The integration of retrieval, reasoning and drafting for refugee law: a third generation legal knowledge based system. In: ICAIL 1999 Proceedings of the 7th International Conference on Artificial Intelligence and Law (1999)Google Scholar
  29. 29.
    Zhang, D., Lee, W.S.: Web Taxonomy Integration using Support Vector Machines. In: WWW 2004, New York, USA, May 17-22 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bernadetta Mianowska
    • 1
  • Ngoc Thanh Nguyen
    • 1
  1. 1.Wroclaw University of TechnologyWroclawPoland

Personalised recommendations