Advertisement

Reduction of Faulty Detected Shot Cuts and Cross Dissolve Effects in Video Segmentation Process of Different Categories of Digital Videos

  • Kazimierz Choroś
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6910)

Abstract

Video segmentation is an important computer vision research field being applied in many digital video analysis domains, such as: video compression, video indexing and retrieval, video scene detection, video content analysis, video object tracking in dynamic scenes, and many others. Video has temporal properties. The temporal segmentation process leads to the partition of a given video into a set of meaningful and individually manageable temporal segments. An effective segmentation technique is able to detect not only abrupt changes but also gradual scene changes, such as fade and dissolve transitions. The effectiveness of four methods was analyzed for five different categories of movie: TV talk-show, documentary movie, animal video, action & adventure, and pop music video. The tests have shown that the specific nature of videos has an important influence on the effectiveness of temporal segmentation methods. Furthermore, the knowledge on these specific features of the style of video editing has been used to reduce the number of faulty detected shot cuts and faulty detected cross dissolve effects.

Keywords

digital video indexing temporal segmentation scene changes cuts cross dissolve effects movie categories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbu, T.: Novel automatic video cut detection technique using Gabor filtering. Computers and Electrical Engineering 35, 712–721 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bertini, M., Del Bimbo, A., Pala, P.: Content-based indexing and retrieval of TV news. Pattern Recognition Letters 22, 503–516 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chasanis, V., Likas, A., Galatsanos, N.: Simultaneous detection of abrupt cuts and dissolves in videos using support vector machines. Pattern Recognition Letters 30, 55–65 (2009)CrossRefGoogle Scholar
  4. 4.
    Chena, L.-H., Laib, Y.-C., Liaoc, H.-Y.M.: Movie scene segmentation using background information. Pattern Recognition 41, 1056–1065 (2008)CrossRefGoogle Scholar
  5. 5.
    Cheong, L.-F.: Scene-based shot change detection and comparative evaluation. Computer Vision and Image Understanding 79, 224–235 (2000)CrossRefGoogle Scholar
  6. 6.
    Choroś, K., Gonet, M.: Effectiveness of video segmentation techniques for different categories of videos. In: Zgrzywa, A., et al. (eds.) New Trends in Multimedia and Network Information Systems, pp. 34–45. IOS Press, Amsterdam (2008)Google Scholar
  7. 7.
    Choroś, K.: Cross dissolve detection in a temporal segmentation process for digital video indexing and retrieval. In: Grzech, A., et al. (eds.) Information Systems Architecture and Technology: Information Systems and Computer Communication Networks, pp. 189–200. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2008)Google Scholar
  8. 8.
    Choroś, K.: Video shot selection and content-based scene detection for automatic classification of TV sports news. In: Tkacz, E., Kapczynski, A. (eds.) Internet – Technical Development and Applications. AISC, vol. 64, pp. 73–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Choroś, K., Pawlaczyk, P.: Content-based scene detection and analysis method for automatic classification of TV sports news. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 120–129. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Choroś, K.: Video structure analysis and content-based indexing in the Automatic Video Indexer AVI. In: Nguyen, N.T., Zgrzywa, A., Czyżewski, A. (eds.) Advances in Multimedia and Network Information System Technologies. AISC, vol. 80, pp. 79–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Del Bimbo, A.: Visual Information Retrieval. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  12. 12.
    Jung, K., Kim, K.I., Jain, K.A.: Text information extraction in images and video: a survey. Pattern Recognition 37, 977–997 (2004)CrossRefGoogle Scholar
  13. 13.
    Koprinska, I., Carrato, S.: Temporal video segmentation: A survey. Signal Processing: Image Communication 16, 477–500 (2001)Google Scholar
  14. 14.
    Küçüktunç, O., Güdükbay, U., Ulusoy, Ö.: Fuzzy color histogram-based video segmentation. Computer Vision and Image Understanding 114, 125–134 (2010)CrossRefGoogle Scholar
  15. 15.
    Lefèvre, S., Holler, K., Vincent, N.: A review of real-time segmentation of uncompressed video sequences for content-based search and retrieval. Real-Time Imaging 9, 73–98 (2003)CrossRefGoogle Scholar
  16. 16.
    Lew, M.S., Sebe, N., Gardner, P.C.: Principles of visual information retrieval. Springer, London (2001)CrossRefGoogle Scholar
  17. 17.
    Lew, M.S., et al.: Content-based multimedia information retrieval: state of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications 2, 1–19 (2006)CrossRefGoogle Scholar
  18. 18.
    Money, A.G., Agius, H.: Video summarisation: A conceptual framework and survey of the state of the art. J. of Visual Communication and Image Representation 19, 121–143 (2008)CrossRefGoogle Scholar
  19. 19.
    Porter, S., Mirmehdi, M., Thomas, B.: Temporal video segmentation and classification of edit effects. Image and Vision Computing 21, 1097–1106 (2003)CrossRefGoogle Scholar
  20. 20.
    Smeaton, A.F., Browne, P.: A usage study of retrieval modalities for video shot retrieval. Information Processing and Management 42, 1330–1344 (2006)CrossRefGoogle Scholar
  21. 21.
    Smeaton, A.F.: Techniques used and open challenges to the analysis, indexing and retrieval of digital video. Information Systems 32, 545–559 (2007)CrossRefGoogle Scholar
  22. 22.
    Yu, J., Srinath, M.D.: An efficient method for scene cut detection. Pattern Recognition Letters 22, 1379–1391 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kazimierz Choroś
    • 1
  1. 1.Institute of InformaticsWrocław University of TechnologyWrocławPoland

Personalised recommendations