Cellular Gene Expression Programming Classifier Learning

  • Joanna Jędrzejowicz
  • Piotr Jędrzejowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6910)


In this paper we propose integrating two collective computational intelligence techniques: gene expression programming and cellular evolutionary algorithms with a view to induce expression trees, which, subsequently, serve as weak classifiers. From these classifiers stronger ensemble classifiers are constructed using majority-voting and boosting techniques. The paper includes the discussion of the validating experiment result confirming high quality of the proposed ensemble classifiers.


gene expression programming cellular evolutionary algorithm ensemble classifiers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Springer Science, New York (2008)zbMATHGoogle Scholar
  2. 2.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science (2007),
  3. 3.
    Bi, Y., Guan, J., Bell, D.: The combination of multiple classifiers using an evidentional reasoning approach. Artif. Intell. 172, 1731–1751 (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Centeno, P., Lawrence, N.D.: Optimising Kernel Parameters and Regularisation Coefficients for Non-linear Discriminant Analysis. Journal of Machine Learning Research 7, 455–491 (2006)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers, HP Labs Tech Report HPL-2003-4, Palo Alto, Ca (2003)Google Scholar
  6. 6.
    Ferreira, C.: Gene Expression Programming: a New Adaptive Algorithm for Solving Problems. Complex Systems 13(2), 87–129 (2001)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ferreira, C.: Gene Expression Programming. Studies in Computational Intell. 21, 337–380 (2006)Google Scholar
  8. 8.
    Freund, Y., Schapire, R.E.: Decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Science 55, 119–139 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
  10. 10.
    Ishibuchi, H., Nojima, Y.: Analysis of Interpretability-accuracy Tradeoff of Fuzzy Systems by Multiobjective Fuzzy Genetics-based Machine Learning. Intern. Journal of Approximate Reasoning 44, 4–31 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Jędrzejowicz, J., Jędrzejowicz, P.: GEP-induced expression trees as weak classifiers. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 129–141. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Jędrzejowicz, J., Jędrzejowicz, P.: A family of GEP-induced ensemble classifiers. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 641–652. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Jędrzejowicz, J., Jędrzejowicz, P.: Cellular GEP-induced classifiers. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6421, pp. 343–352. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Krętowski, M.: A memetic algorithm for global induction of decision trees. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 531–540. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine 3, 22–43 (2006)Google Scholar
  16. 16.
    Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 26(5), 1651–1686 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  18. 18.
    Torre, F.: Boosting Correct Least General Generalizations, Technical Report GRApp A-0104, Grenoble (2004)Google Scholar
  19. 19.
    Weinert, W.R., Lopes, H.S.: GEPCLASS: A classification rule discovery tool using gene expression programming. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 871–880. Springer, Heidelberg (2006)Google Scholar
  20. 20.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  21. 21.
    Zhou, C., Xiao, W., Tirpak, T.M., Nelson, P.C.: Evolving Accurate and Compact Classification Rules with Gene Expression Programming. IEEE Transactions on Evolutionary Computation 7(6), 519–531 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joanna Jędrzejowicz
    • 1
  • Piotr Jędrzejowicz
    • 2
  1. 1.Institute of InformaticsGdańsk UniversityGdańskPoland
  2. 2.Department of Information SystemsGdynia Maritime UniversityGdyniaPoland

Personalised recommendations