Skip to main content

Self-organization in Pedestrian Crowds

  • Chapter
  • First Online:
Social Self-Organization

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The modeling of pedestrian motion is of great theoretical and practical interest. Recent experimental efforts have revealed quantitative details of pedestrian interactions, which have been successfully cast into mathematical equations. Furthermore, corresponding computer simulations of large numbers of pedestrians have been compared with the empirically observed dynamics of crowds. Such studies have led to a deeper understanding of how collective behavior on a macroscopic scale emerges from individual human interactions. Interestingly enough, the non-linear interactions of pedestrians lead to various complex, spatio-temporal pattern-formation phenomena. This includes the emergence of lanes of uniform walking direction, oscillations of the pedestrian flow at bottlenecks, and the formation of stripes in two intersecting flows. Such self-organized patterns of motion demonstrate that an efficient, “intelligent” collective dynamics can be based on simple, local interactions. Under extreme conditions, however, coordination may break down, giving rise to critical crowd conditions. Examples are “freezing-by-heating” and “faster-is-slower” effects, but also the transition to “turbulent” crowd dynamics. These observations have important implications for the optimization of pedestrian facilities, in particular for evacuation situations.

This chapter reprints parts of a previous publication with kind permission of the copyright owner, Springer Publishers. It is requested to cite this work as follows: D. Helbing and A. Johansson (2010) Pedestrian, crowd and evacuation dynamics, in: Encyclopedia of Complexity and Systems Science (Springer, New York), Vol. 16, pp. 6476–6495.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Primary Literature

    Google Scholar 

  2. B.D. Hankin, R.A. Wright, Oper. Res. Q. 9, 81–88 (1958)

    Google Scholar 

  3. S.J. Older, Traffic. Eng. Contr. 10, 160–163 (1968)

    Google Scholar 

  4. U. Weidmann, Transporttechnik der Fußgänger, (Institut für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau, ETH Zürich, 1993)

    Google Scholar 

  5. J.J. Fruin, Designing for pedestrians: A level-of-service concept, in Highway Research Record, Number 355: Pedestrians (Highway Research Board, Washington, D.C., 1971), pp. 1–15

    Google Scholar 

  6. J. Pauls, Fire Technol. 20, 27–47 (1984)

    Google Scholar 

  7. W.H. Whyte, City. Rediscovering the Center (Doubleday, New York, 1988)

    Google Scholar 

  8. D. Helbing, Verkehrsdynamik (Springer, Berlin, 1997)

    Google Scholar 

  9. D. Helbing, L. Buzna, A. Johansson, T. Werner, Transport. Sci. 39(1), 1–24 (2005)

    Google Scholar 

  10. W.M. Predtetschenski, A.I. Milinski, Personenströme in Gebäuden – Berechnungsmethoden für die Projektierung – (Rudolf Müller, Köln-Braunsfeld, 1971)

    Google Scholar 

  11. Transportation Research Board, Highway Capacity Manual, Special Report 209 (Transportation Research Board, Washington, D.C., 1985)

    Google Scholar 

  12. S.J. Yuhaski Jr., J.M. Macgregor Smith, Queueing Syst. 4, 319–338 (1989)

    Google Scholar 

  13. D. Garbrecht, Traffic Q. 27, 89–109 (1973)

    Google Scholar 

  14. N. Ashford, M. O’Leary, P.D. McGinity, Traffic. Eng. Contr. 17, 207–210 (1976)

    Google Scholar 

  15. A. Borgers, H. Timmermans, Socio-Econ. Plann. Sci. 20, 25–31 (1986)

    Google Scholar 

  16. D. Helbing, Stochastische Methoden, nichtlineare Dynamik und quantitative Modelle sozialer Prozesse, Ph.D. thesis (University of Stuttgart, 1992, published by Shaker, Aachen, 1993)

    Google Scholar 

  17. D. Helbing, M. Isobe, T. Nagatani, K. Takimoto, Phys. Rev. E 67, 067101 (2003)

    Google Scholar 

  18. W. Daamen, S.P. Hoogendoorn, in Proceedings of the 82nd Annual Meeting at the Transportation Research Board (CDROM, Washington D.C., 2003)

    Google Scholar 

  19. M. Isobe, D. Helbing, T. Nagatani, Phys. Rev. E 69, 066132 (2004)

    Google Scholar 

  20. A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, J. Stat. Mech. P10002 (2005)

    Google Scholar 

  21. T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, M. Schreckenberg, J. Stat. Mech. P10001 (2006)

    Google Scholar 

  22. L.F. Henderson, Transport. Res. 8, 509–515 (1974)

    Google Scholar 

  23. R.L. Hughes, Transport. Res. B 36, 507–535 (2002)

    Google Scholar 

  24. D. Helbing, Complex Syst. 6, 391–415 (1992)

    Google Scholar 

  25. S.P. Hoogendoorn, P.H.L. Bovy, Transport. Res. Record. 1710, 28–36 (2000)

    Google Scholar 

  26. D. Helbing, Behav. Sci. 36, 298–310 (1991)

    Google Scholar 

  27. D. Helbing, P. Molnár, Phys. Rev. E 51, 4282–4286 (1995)

    Google Scholar 

  28. P.G. Gipps, B. Marksjö, Math. Comp. Simul. 27, 95–105 (1985)

    Google Scholar 

  29. K. Bolay, Nichtlineare Phänomene in einem fluid-dynamischen Verkehrsmodell (Master’s thesis, University of Stuttgart, 1998)

    Google Scholar 

  30. V.J. Blue, J.L. Adler, Transport. Res. Record. 1644, 29–36 (1998)

    Google Scholar 

  31. M. Fukui, Y. Ishibashi, J. Phys. Soc. Jpn. 68, 2861–2863 (1999)

    Google Scholar 

  32. M. Muramatsu, T. Irie, T. Nagatani, Physica A 267, 487–498 (1999)

    Google Scholar 

  33. H. Klüpfel, M. Meyer-König, J. Wahle, M. Schreckenberg, in Theory and Practical Issues on Cellular Automata, ed. by S. Bandini, T. Worsch (Springer, London, 2000)

    Google Scholar 

  34. C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Physica A 295, 507–525 (2001)

    Google Scholar 

  35. S. Gopal, T.R. Smith, in Spatial Choices and Processes, ed. by M.M. Fischer, P. Nijkamp, Y.Y. Papageorgiou (North-Holland, Amsterdam, 1990), pp. 169–200

    Google Scholar 

  36. C.W. Reynolds, in From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, ed. by D. Cliff, P. Husbands, J.-A. Meyer, S. Wilson (MIT Press, Cambridge, Massachusetts, 1994), pp. 402–410

    Google Scholar 

  37. D. Helbing, Behav. Sci. 37, 190–214 (1992)

    Google Scholar 

  38. D. Helbing, P. Molnár, I. Farkas, K. Bolay, Environ. Plann. B 28, 361–383 (2001)

    Google Scholar 

  39. J. Klockgether, H.-P. Schwefel, in Proceedings of the Eleventh Symposium on Engineering Aspects of Magnetohydrodynamics, ed. by D.G. Elliott (California Institute of Technology, Pasadena, CA, 1970), pp. 141–148

    Google Scholar 

  40. D. Helbing, in Economic Evolution and Demographic Change. Formal Models in Social Sciences, ed. by G. Haag, U. Mueller, K.G. Troitzsch (Springer, Berlin, 1992), pp. 330–348

    Google Scholar 

  41. N.E. Miller, in Personality and the behavior disorders, ed. by J.McV. Hunt, Vol. 1 (Ronald, New York, 1944)

    Google Scholar 

  42. N.E. Miller, in Psychology: A Study of Science, ed. by S. Koch, Vol. 2 (McGraw Hill, New York, 1959)

    Google Scholar 

  43. K. Lewin, Field Theory in Social Science (Harper & Brothers, New York, 1951)

    Google Scholar 

  44. D. Helbing, J. Math. Sociol. 19(3), 189–219 (1994)

    Google Scholar 

  45. S. Hoogendoorn, P.H.L. Bovy, Optim. Contr. Appl. Meth. 24(3), 153–172 (2003)

    Google Scholar 

  46. A. Johansson, D. Helbing, P.K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to videotracking data. Advances in Complex Systems (ACS), 10(2) 271–288 (2007)

    Google Scholar 

  47. T.I. Lakoba, D.J. Kaup, N.M. Finkelstein, Simulation 81(5), 339–352 (2005)

    Google Scholar 

  48. A. Seyfried, B. Steffen, T. Lippert, Physica A 368, 232–238 (2006)

    Google Scholar 

  49. J. Kerridge, T. Chamberlain, in Pedestrian and Evacuation Dynamics ’05, ed. by N. Waldau, P. Gattermann, H. Knoflacher, M. Schreckenberg (Springer, Berlin, 2005)

    Google Scholar 

  50. S.P. Hoogendoorn, W. Daamen, P.H.L. Bovy, in Proceedings of the 82nd Annual Meeting at the Transportation Research Board (CDROM, Mira Digital Publishing, Washington D.C., 2003)

    Google Scholar 

  51. K. Teknomo, Microscopic pedestrian flow characteristics: Development of an image processing data collection and simulation model (PhD thesis, Tohoku University Japan, Sendai, 2002)

    Google Scholar 

  52. D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)

    Google Scholar 

  53. L.P. Kadanoff, J. Stat. Phys. 39, 267–283 (1985)

    Google Scholar 

  54. H.E. Stanley, N. Ostrowsky (eds.), On Growth and Form (Martinus Nijhoff, Boston, 1986)

    Google Scholar 

  55. T. Arns, Video films of pedestrian crowds (Stuttgart, 1993)

    Google Scholar 

  56. H.-H. Stølum, Nature 271, 1710–1713 (1996)

    Google Scholar 

  57. I. Rodríguez-Iturbe, A. Rinaldo, Fractal River Basins: Chance and Self-Organization (Cambridge University, Cambridge, England, 1997)

    Google Scholar 

  58. D. Helbing, I. Farkas, T. Vicsek, Phys. Rev. Lett. 84, 1240–1243 (2000)

    Google Scholar 

  59. T. Schelling, J. Math. Sociol. 1, 143–186 (1971)

    Google Scholar 

  60. D. Helbing, T. Platkowski, Int. J. Chaos Theor. Appl. 5(4), 47–62 (2000)

    Google Scholar 

  61. S.P. Hoogendoorn, W. Daamen, Transpn. Sci. 39(2), 147–159 (2005)

    Google Scholar 

  62. T. Kretz, A. Grünebohm, M. Schreckenberg, J. Stat. Mech. P10014 (2006)

    Google Scholar 

  63. K. Ando, H. Oto, T. Aoki, Railway Res. Rev. 45(8), 8–13 (1988)

    Google Scholar 

  64. K.H. Drager, G. Løvås, J. Wiklund, H. Soma, D. Duong, A. Violas, V. Lanèrès, in the Proceedings of the 1992 Emergency Management and Engineering Conference (Society for Computer Simulation, Orlando, Florida, 1992), pp. 101–108

    Google Scholar 

  65. M. Ebihara, A. Ohtsuki, H. Iwaki, Microcomput. Civ. Eng. 7, 63–71 (1992)

    Google Scholar 

  66. N. Ketchell, S. Cole, D.M. Webber, C.A. Marriott, P.J. Stephens, I.R. Brearley, J. Fraser, J. Doheny, J. Smart, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 361–370

    Google Scholar 

  67. S. Okazaki, S. Matsushita, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 271–280

    Google Scholar 

  68. G.K. Still, New computer system can predict human behaviour response to building fires. Fire 84, 40–41 (1993)

    Google Scholar 

  69. G.K. Still, Crowd Dynamics (Ph.D. thesis, University of Warwick, 2000)

    Google Scholar 

  70. P.A. Thompson, E.W. Marchant, Modelling techniques for evacuation, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 259–269

    Google Scholar 

  71. G.G. Løvås, On the importance of building evacuation system components, IEEE Trans. Eng. Manag. 45, 181–191 (1998)

    Google Scholar 

  72. H.W. Hamacher, S.A. Tjandra, in Pedestrian and Evacuation Dynamics, ed. by M. Schreckenberg, S.D. Sharma (Springer, Berlin, 2001), pp. 227–266

    Google Scholar 

  73. D. Elliott, D. Smith, Football stadia disasters in the United Kingdom: Learning from tragedy?, Industrial & Environmental Crisis Quarterly 7(3), 205–229 (1993)

    Google Scholar 

  74. B.D. Jacobs, P. ’t Hart, in Hazard Management and Emergency Planning, Chap. 10, ed. by D.J. Parker, J.W. Handmer (James & James Science, London, 1992)

    Google Scholar 

  75. D. Canter (ed.), Fires and Human Behaviour (David Fulton, London, 1990)

    Google Scholar 

  76. A. Mintz, J. Abnorm. Norm. Soc. Psychol. 46, 150–159 (1951)

    Google Scholar 

  77. J.P. Keating, Fire J., 57–61+147 (May/1982)

    Google Scholar 

  78. D.L. Miller, Introduction to Collective Behavior, Fig. 3.3 and Chap. 9 (Wadsworth, Belmont, CA, 1985)

    Google Scholar 

  79. J.S. Coleman, Foundations of Social Theory, Chaps. 9 and 33 (Belkamp, Cambridge, MA, 1990)

    Google Scholar 

  80. N.R. Johnson, Panic at “The Who Concert Stampede”: An empirical assessment, Soc. Prob. 34(4), 362–373 (1987)

    Google Scholar 

  81. G. LeBon, The Crowd (Viking, New York, 1960 [1895])

    Google Scholar 

  82. E. Quarantelli, Sociol. Soc. Res. 41, 187–194 (1957)

    Google Scholar 

  83. N.J. Smelser, Theory of Collective Behavior, (The Free Press, New York, 1963)

    Google Scholar 

  84. R. Brown, Social Psychology (The Free Press, New York, 1965)

    Google Scholar 

  85. R.H. Turner, L.M. Killian, Collective Behavior, 3rd edn. (Prentice Hall, Englewood Cliffs, NJ, 1987)

    Google Scholar 

  86. J.L. Bryan, Fire J., 27–30+86–90 (Nov./1985)

    Google Scholar 

  87. R. Axelrod, W.D. Hamilton, Science 211, 1390–1396 (1981)

    Google Scholar 

  88. R. Axelrod, D. Dion, Science 242, 1385–1390 (1988)

    Google Scholar 

  89. N.S. Glance, B.A. Huberman, Sci. Am. 270, 76–81 (1994)

    Google Scholar 

  90. R.A. Smith, J.F. Dickie (eds.), Engineering for Crowd Safety (Elsevier, Amsterdam, 1993)

    Google Scholar 

  91. H.H. Kelley, J.C. Condry Jr., A.E. Dahlke, A.H. Hill, J. Exp. Soc. Psychol. 1, 20–54 (1965)

    Google Scholar 

  92. D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487–490 (2000)

    Google Scholar 

  93. G.H. Ristow, H.J. Herrmann, Phys. Rev. E 50, R5–R8 (1994)

    Google Scholar 

  94. D.E. Wolf, P. Grassberger (eds.), Friction, Arching, Contact Dynamics (World Scientific, Singapore, 1997)

    Google Scholar 

  95. D. Helbing, A. Johansson, J. Mathiesen, M.H. Jensen, A. Hansen Phys. Rev. Lett. 97, 168001 (2006)

    Google Scholar 

  96. S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, Nature 381, 767–770 (1996)

    Google Scholar 

  97. G. Peng, H.J. Herrmann, Phys. Rev. E 49, R1796–R1799 (1994)

    Google Scholar 

  98. F. Radjai, S. Roux, Phys. Rev. Lett. 89, 064302 (2002)

    Google Scholar 

  99. K.R. Sreenivasan, Nature 344, 192–193 (1990)

    Google Scholar 

  100. M.E. Cates, J.P. Wittmer, J.-P. Bouchaud, P. Claudin, Phys. Rev. Lett. 81, 1841–1844 (1998)

    Google Scholar 

  101. P. Bak, K. Christensen, L. Danon, T. Scanlon, Phys. Rev. Lett. 88, 178501 (2002)

    Google Scholar 

  102. P.A. Johnson, X. Jia, Nature 437, 871–874 (2005)

    Google Scholar 

  103. J.J. Fruin, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 99–108

    Google Scholar 

  104. T. Baeck, Evolutionary Algorithms in Theory and Practice (Oxford University Press, New York, 1996)

    Google Scholar 

  105. A. Johansson, D. Helbing, in Pedestrian and Evacuation Dynamics 2005, ed. by N. Waldau, P. Gattermann, H. Knoflacher, M. Schreckenberg (Springer-Verlag, Berlin, 2007), pp. 267–272

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for partial financial support by the German Research Foundation (research projects He 2789/7-1, 8-1) and by the “Cooperative Center for Communication Networks Data Analysis”, a NAP project sponsored by the Hungarian National Office of Research and Technology under grant No. KCKHA005.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helbing, D. (2012). Self-organization in Pedestrian Crowds. In: Helbing, D. (eds) Social Self-Organization. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24004-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24004-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24003-4

  • Online ISBN: 978-3-642-24004-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics