Advertisement

Self-organization in Pedestrian Crowds

  • Dirk Helbing
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The modeling of pedestrian motion is of great theoretical and practical interest. Recent experimental efforts have revealed quantitative details of pedestrian interactions, which have been successfully cast into mathematical equations. Furthermore, corresponding computer simulations of large numbers of pedestrians have been compared with the empirically observed dynamics of crowds. Such studies have led to a deeper understanding of how collective behavior on a macroscopic scale emerges from individual human interactions. Interestingly enough, the non-linear interactions of pedestrians lead to various complex, spatio-temporal pattern-formation phenomena. This includes the emergence of lanes of uniform walking direction, oscillations of the pedestrian flow at bottlenecks, and the formation of stripes in two intersecting flows. Such self-organized patterns of motion demonstrate that an efficient, “intelligent” collective dynamics can be based on simple, local interactions. Under extreme conditions, however, coordination may break down, giving rise to critical crowd conditions. Examples are “freezing-by-heating” and “faster-is-slower” effects, but also the transition to “turbulent” crowd dynamics. These observations have important implications for the optimization of pedestrian facilities, in particular for evacuation situations.

Keywords

Intermittent Flow Pedestrian Flow Pedestrian Motion Social Force Model Stripe Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful for partial financial support by the German Research Foundation (research projects He 2789/7-1, 8-1) and by the “Cooperative Center for Communication Networks Data Analysis”, a NAP project sponsored by the Hungarian National Office of Research and Technology under grant No. KCKHA005.

References

  1. .
    Primary Literature Google Scholar
  2. 1.
    B.D. Hankin, R.A. Wright, Oper. Res. Q. 9, 81–88 (1958)Google Scholar
  3. 2.
    S.J. Older, Traffic. Eng. Contr. 10, 160–163 (1968)Google Scholar
  4. 3.
    U. Weidmann, Transporttechnik der Fußgänger, (Institut für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau, ETH Zürich, 1993)Google Scholar
  5. 4.
    J.J. Fruin, Designing for pedestrians: A level-of-service concept, in Highway Research Record, Number 355: Pedestrians (Highway Research Board, Washington, D.C., 1971), pp. 1–15Google Scholar
  6. 5.
    J. Pauls, Fire Technol. 20, 27–47 (1984)Google Scholar
  7. 6.
    W.H. Whyte, City. Rediscovering the Center (Doubleday, New York, 1988)Google Scholar
  8. 7.
    D. Helbing, Verkehrsdynamik (Springer, Berlin, 1997)Google Scholar
  9. 8.
    D. Helbing, L. Buzna, A. Johansson, T. Werner, Transport. Sci. 39(1), 1–24 (2005)Google Scholar
  10. 9.
    W.M. Predtetschenski, A.I. Milinski, Personenströme in Gebäuden – Berechnungsmethoden für die Projektierung – (Rudolf Müller, Köln-Braunsfeld, 1971)Google Scholar
  11. 10.
    Transportation Research Board, Highway Capacity Manual, Special Report 209 (Transportation Research Board, Washington, D.C., 1985)Google Scholar
  12. 11.
    S.J. Yuhaski Jr., J.M. Macgregor Smith, Queueing Syst. 4, 319–338 (1989)Google Scholar
  13. 12.
    D. Garbrecht, Traffic Q. 27, 89–109 (1973)Google Scholar
  14. 13.
    N. Ashford, M. O’Leary, P.D. McGinity, Traffic. Eng. Contr. 17, 207–210 (1976)Google Scholar
  15. 14.
    A. Borgers, H. Timmermans, Socio-Econ. Plann. Sci. 20, 25–31 (1986)Google Scholar
  16. 15.
    D. Helbing, Stochastische Methoden, nichtlineare Dynamik und quantitative Modelle sozialer Prozesse, Ph.D. thesis (University of Stuttgart, 1992, published by Shaker, Aachen, 1993)Google Scholar
  17. 16.
    D. Helbing, M. Isobe, T. Nagatani, K. Takimoto, Phys. Rev. E 67, 067101 (2003)Google Scholar
  18. 17.
    W. Daamen, S.P. Hoogendoorn, in Proceedings of the 82nd Annual Meeting at the Transportation Research Board (CDROM, Washington D.C., 2003)Google Scholar
  19. 18.
    M. Isobe, D. Helbing, T. Nagatani, Phys. Rev. E 69, 066132 (2004)Google Scholar
  20. 19.
    A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, J. Stat. Mech. P10002 (2005)Google Scholar
  21. 20.
    T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, M. Schreckenberg, J. Stat. Mech. P10001 (2006)Google Scholar
  22. 21.
    L.F. Henderson, Transport. Res. 8, 509–515 (1974)Google Scholar
  23. 22.
    R.L. Hughes, Transport. Res. B 36, 507–535 (2002)Google Scholar
  24. 23.
    D. Helbing, Complex Syst. 6, 391–415 (1992)Google Scholar
  25. 24.
    S.P. Hoogendoorn, P.H.L. Bovy, Transport. Res. Record. 1710, 28–36 (2000)Google Scholar
  26. 25.
    D. Helbing, Behav. Sci. 36, 298–310 (1991)Google Scholar
  27. 26.
    D. Helbing, P. Molnár, Phys. Rev. E 51, 4282–4286 (1995)Google Scholar
  28. 27.
    P.G. Gipps, B. Marksjö, Math. Comp. Simul. 27, 95–105 (1985)Google Scholar
  29. 28.
    K. Bolay, Nichtlineare Phänomene in einem fluid-dynamischen Verkehrsmodell (Master’s thesis, University of Stuttgart, 1998)Google Scholar
  30. 29.
    V.J. Blue, J.L. Adler, Transport. Res. Record. 1644, 29–36 (1998)Google Scholar
  31. 30.
    M. Fukui, Y. Ishibashi, J. Phys. Soc. Jpn. 68, 2861–2863 (1999)Google Scholar
  32. 31.
    M. Muramatsu, T. Irie, T. Nagatani, Physica A 267, 487–498 (1999)Google Scholar
  33. 32.
    H. Klüpfel, M. Meyer-König, J. Wahle, M. Schreckenberg, in Theory and Practical Issues on Cellular Automata, ed. by S. Bandini, T. Worsch (Springer, London, 2000)Google Scholar
  34. 33.
    C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Physica A 295, 507–525 (2001)Google Scholar
  35. 34.
    S. Gopal, T.R. Smith, in Spatial Choices and Processes, ed. by M.M. Fischer, P. Nijkamp, Y.Y. Papageorgiou (North-Holland, Amsterdam, 1990), pp. 169–200Google Scholar
  36. 35.
    C.W. Reynolds, in From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, ed. by D. Cliff, P. Husbands, J.-A. Meyer, S. Wilson (MIT Press, Cambridge, Massachusetts, 1994), pp. 402–410Google Scholar
  37. 36.
    D. Helbing, Behav. Sci. 37, 190–214 (1992)Google Scholar
  38. 37.
    D. Helbing, P. Molnár, I. Farkas, K. Bolay, Environ. Plann. B 28, 361–383 (2001)Google Scholar
  39. 38.
    J. Klockgether, H.-P. Schwefel, in Proceedings of the Eleventh Symposium on Engineering Aspects of Magnetohydrodynamics, ed. by D.G. Elliott (California Institute of Technology, Pasadena, CA, 1970), pp. 141–148Google Scholar
  40. 39.
    D. Helbing, in Economic Evolution and Demographic Change. Formal Models in Social Sciences, ed. by G. Haag, U. Mueller, K.G. Troitzsch (Springer, Berlin, 1992), pp. 330–348Google Scholar
  41. 40.
    N.E. Miller, in Personality and the behavior disorders, ed. by J.McV. Hunt, Vol. 1 (Ronald, New York, 1944)Google Scholar
  42. 41.
    N.E. Miller, in Psychology: A Study of Science, ed. by S. Koch, Vol. 2 (McGraw Hill, New York, 1959)Google Scholar
  43. 42.
    K. Lewin, Field Theory in Social Science (Harper & Brothers, New York, 1951)Google Scholar
  44. 43.
    D. Helbing, J. Math. Sociol. 19(3), 189–219 (1994)Google Scholar
  45. 44.
    S. Hoogendoorn, P.H.L. Bovy, Optim. Contr. Appl. Meth. 24(3), 153–172 (2003)Google Scholar
  46. 45.
    A. Johansson, D. Helbing, P.K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to videotracking data. Advances in Complex Systems (ACS), 10(2) 271–288 (2007)Google Scholar
  47. 46.
    T.I. Lakoba, D.J. Kaup, N.M. Finkelstein, Simulation 81(5), 339–352 (2005)Google Scholar
  48. 47.
    A. Seyfried, B. Steffen, T. Lippert, Physica A 368, 232–238 (2006)Google Scholar
  49. 48.
    J. Kerridge, T. Chamberlain, in Pedestrian and Evacuation Dynamics ’05, ed. by N. Waldau, P. Gattermann, H. Knoflacher, M. Schreckenberg (Springer, Berlin, 2005)Google Scholar
  50. 49.
    S.P. Hoogendoorn, W. Daamen, P.H.L. Bovy, in Proceedings of the 82nd Annual Meeting at the Transportation Research Board (CDROM, Mira Digital Publishing, Washington D.C., 2003)Google Scholar
  51. 50.
    K. Teknomo, Microscopic pedestrian flow characteristics: Development of an image processing data collection and simulation model (PhD thesis, Tohoku University Japan, Sendai, 2002)Google Scholar
  52. 51.
    D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)Google Scholar
  53. 52.
    L.P. Kadanoff, J. Stat. Phys. 39, 267–283 (1985)Google Scholar
  54. 53.
    H.E. Stanley, N. Ostrowsky (eds.), On Growth and Form (Martinus Nijhoff, Boston, 1986)Google Scholar
  55. 54.
    T. Arns, Video films of pedestrian crowds (Stuttgart, 1993)Google Scholar
  56. 55.
    H.-H. Stølum, Nature 271, 1710–1713 (1996)Google Scholar
  57. 56.
    I. Rodríguez-Iturbe, A. Rinaldo, Fractal River Basins: Chance and Self-Organization (Cambridge University, Cambridge, England, 1997)Google Scholar
  58. 57.
    D. Helbing, I. Farkas, T. Vicsek, Phys. Rev. Lett. 84, 1240–1243 (2000)Google Scholar
  59. 58.
    T. Schelling, J. Math. Sociol. 1, 143–186 (1971)Google Scholar
  60. 59.
    D. Helbing, T. Platkowski, Int. J. Chaos Theor. Appl. 5(4), 47–62 (2000)Google Scholar
  61. 60.
    S.P. Hoogendoorn, W. Daamen, Transpn. Sci. 39(2), 147–159 (2005)Google Scholar
  62. 61.
    T. Kretz, A. Grünebohm, M. Schreckenberg, J. Stat. Mech. P10014 (2006)Google Scholar
  63. 62.
    K. Ando, H. Oto, T. Aoki, Railway Res. Rev. 45(8), 8–13 (1988)Google Scholar
  64. 63.
    K.H. Drager, G. Løvås, J. Wiklund, H. Soma, D. Duong, A. Violas, V. Lanèrès, in the Proceedings of the 1992 Emergency Management and Engineering Conference (Society for Computer Simulation, Orlando, Florida, 1992), pp. 101–108Google Scholar
  65. 64.
    M. Ebihara, A. Ohtsuki, H. Iwaki, Microcomput. Civ. Eng. 7, 63–71 (1992)Google Scholar
  66. 65.
    N. Ketchell, S. Cole, D.M. Webber, C.A. Marriott, P.J. Stephens, I.R. Brearley, J. Fraser, J. Doheny, J. Smart, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 361–370Google Scholar
  67. 66.
    S. Okazaki, S. Matsushita, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 271–280Google Scholar
  68. 67.
    G.K. Still, New computer system can predict human behaviour response to building fires. Fire 84, 40–41 (1993)Google Scholar
  69. 68.
    G.K. Still, Crowd Dynamics (Ph.D. thesis, University of Warwick, 2000)Google Scholar
  70. 69.
    P.A. Thompson, E.W. Marchant, Modelling techniques for evacuation, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 259–269Google Scholar
  71. 70.
    G.G. Løvås, On the importance of building evacuation system components, IEEE Trans. Eng. Manag. 45, 181–191 (1998)Google Scholar
  72. 71.
    H.W. Hamacher, S.A. Tjandra, in Pedestrian and Evacuation Dynamics, ed. by M. Schreckenberg, S.D. Sharma (Springer, Berlin, 2001), pp. 227–266Google Scholar
  73. 72.
    D. Elliott, D. Smith, Football stadia disasters in the United Kingdom: Learning from tragedy?, Industrial & Environmental Crisis Quarterly 7(3), 205–229 (1993)Google Scholar
  74. 73.
    B.D. Jacobs, P. ’t Hart, in Hazard Management and Emergency Planning, Chap. 10, ed. by D.J. Parker, J.W. Handmer (James & James Science, London, 1992)Google Scholar
  75. 74.
    D. Canter (ed.), Fires and Human Behaviour (David Fulton, London, 1990)Google Scholar
  76. 75.
    A. Mintz, J. Abnorm. Norm. Soc. Psychol. 46, 150–159 (1951)Google Scholar
  77. 76.
    J.P. Keating, Fire J., 57–61+147 (May/1982)Google Scholar
  78. 77.
    D.L. Miller, Introduction to Collective Behavior, Fig. 3.3 and Chap. 9 (Wadsworth, Belmont, CA, 1985)Google Scholar
  79. 78.
    J.S. Coleman, Foundations of Social Theory, Chaps. 9 and 33 (Belkamp, Cambridge, MA, 1990)Google Scholar
  80. 79.
    N.R. Johnson, Panic at “The Who Concert Stampede”: An empirical assessment, Soc. Prob. 34(4), 362–373 (1987)Google Scholar
  81. 80.
    G. LeBon, The Crowd (Viking, New York, 1960 [1895])Google Scholar
  82. 81.
    E. Quarantelli, Sociol. Soc. Res. 41, 187–194 (1957)Google Scholar
  83. 82.
    N.J. Smelser, Theory of Collective Behavior, (The Free Press, New York, 1963)Google Scholar
  84. 83.
    R. Brown, Social Psychology (The Free Press, New York, 1965)Google Scholar
  85. 84.
    R.H. Turner, L.M. Killian, Collective Behavior, 3rd edn. (Prentice Hall, Englewood Cliffs, NJ, 1987)Google Scholar
  86. 85.
    J.L. Bryan, Fire J., 27–30+86–90 (Nov./1985)Google Scholar
  87. 86.
    R. Axelrod, W.D. Hamilton, Science 211, 1390–1396 (1981)Google Scholar
  88. 87.
    R. Axelrod, D. Dion, Science 242, 1385–1390 (1988)Google Scholar
  89. 88.
    N.S. Glance, B.A. Huberman, Sci. Am. 270, 76–81 (1994)Google Scholar
  90. 89.
    R.A. Smith, J.F. Dickie (eds.), Engineering for Crowd Safety (Elsevier, Amsterdam, 1993)Google Scholar
  91. 90.
    H.H. Kelley, J.C. Condry Jr., A.E. Dahlke, A.H. Hill, J. Exp. Soc. Psychol. 1, 20–54 (1965)Google Scholar
  92. 91.
    D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487–490 (2000)Google Scholar
  93. 92.
    G.H. Ristow, H.J. Herrmann, Phys. Rev. E 50, R5–R8 (1994)Google Scholar
  94. 93.
    D.E. Wolf, P. Grassberger (eds.), Friction, Arching, Contact Dynamics (World Scientific, Singapore, 1997)Google Scholar
  95. 94.
    D. Helbing, A. Johansson, J. Mathiesen, M.H. Jensen, A. Hansen Phys. Rev. Lett. 97, 168001 (2006)Google Scholar
  96. 95.
    S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, Nature 381, 767–770 (1996)Google Scholar
  97. 96.
    G. Peng, H.J. Herrmann, Phys. Rev. E 49, R1796–R1799 (1994)Google Scholar
  98. 97.
    F. Radjai, S. Roux, Phys. Rev. Lett. 89, 064302 (2002)Google Scholar
  99. 98.
    K.R. Sreenivasan, Nature 344, 192–193 (1990)Google Scholar
  100. 99.
    M.E. Cates, J.P. Wittmer, J.-P. Bouchaud, P. Claudin, Phys. Rev. Lett. 81, 1841–1844 (1998)Google Scholar
  101. 100.
    P. Bak, K. Christensen, L. Danon, T. Scanlon, Phys. Rev. Lett. 88, 178501 (2002)Google Scholar
  102. 101.
    P.A. Johnson, X. Jia, Nature 437, 871–874 (2005)Google Scholar
  103. 102.
    J.J. Fruin, in Engineering for Crowd Safety, ed. by R.A. Smith, J.F. Dickie (Elsevier, Amsterdam, 1993), pp. 99–108Google Scholar
  104. 103.
    T. Baeck, Evolutionary Algorithms in Theory and Practice (Oxford University Press, New York, 1996)Google Scholar
  105. 104.
    A. Johansson, D. Helbing, in Pedestrian and Evacuation Dynamics 2005, ed. by N. Waldau, P. Gattermann, H. Knoflacher, M. Schreckenberg (Springer-Verlag, Berlin, 2007), pp. 267–272Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dirk Helbing
    • 1
  1. 1.CLU E1ETH ZurichZurichSwitzerland

Personalised recommendations