Systemic Risks in Society and Economics

  • Dirk Helbing
Part of the Understanding Complex Systems book series (UCS)


This contribution presents a summary of sources and drivers of systemic risks in socio-economic systems and related governance issues. The analysis is based on the theory of complex systems and illustrated by numerous examples, including financial market instability. Typical misunderstandings regarding the behavior and functioning of socio-economic systems will be addressed, and some current threats for the stability of social and economic systems are pointed out.


Traffic Flow Systemic Risk Credit Default Swap System Element Interbank Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the ETH Competence Center “Coping with Crises in Complex Socio-Economic Systems” (CCSS) through ETH Research Grant CH1-01 08-2. The author would like to thank Peter Felten for creating many of the illustrations shown in this contribution. Furthermore, the author is grateful for inspiring discussions with Kay Axhausen, Stefano Battiston, Lubos Buzna, Lars-Erik Cederman, Hans Herrmann, Imre Kondor, Matteo Marsili, Frank Schweitzer, Didier Sornette, Stefan Thurner, and many others.


  1. 1.
    D. Sornette, Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder. (Springer, Berlin, 2006)Google Scholar
  2. 2.
    S. Albeverio, V. Jentsch, H. Kantz, eds., Extreme Events in Nature and Society. (Springer, Berlin, 2006)Google Scholar
  3. 3.
    A. Bunde, J. Kropp, and H. J. Schellnhuber, eds., The Science of Disasters. Climate Disruptions, Heart Attacks, and Market Crashes. (Springer, Berlin, 2002)Google Scholar
  4. 4.
    M. Buchanan, Ubiquity. Why Catastrophes Happen. (Three Rivers, New York, 2000)Google Scholar
  5. 5.
    Office of the President of Columbia University, Lee C. Bollinger (2005) Announcing the Columbia Committee on Global Thought, see
  6. 6.
    W. Weidlich, Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences. (Harwood Academic, Amsterdam, 2000)Google Scholar
  7. 7.
    H. Haken, Synergetics: Introduction and Advanced Topics. (Springer, Berlin, 2004)Google Scholar
  8. 8.
    D. Helbing, Quantitative Sociodynamics. (Kluwer Academic, Dordrecht, 1995)Google Scholar
  9. 9.
    R. Axelrod, The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration (Princeton University, Princeton, NJ, 1997)Google Scholar
  10. 10.
    F. Schweitzer, ed. Self-Organization of Complex Structures: From Individual to Collective Dynamics (Gordon and Breach, Amsterdam, 1997)Google Scholar
  11. 11.
    D.S. Byrne, Complexity Theory and the Social Sciences: An Introduction (Routledge, New York, 1998)Google Scholar
  12. 12.
    W. Buckley, Society–A Complex Adaptive System: Essays in Social Theory. (Routledge, London, 1998)Google Scholar
  13. 13.
    S.Y. Auyang, Foundations of Complex-System Theories in Economics, Evolutionary Biology, and Statistical Physics. (Cambridge University, Cambridge, 1999)Google Scholar
  14. 14.
    F. Schweitzer, ed. Modeling Complexity in Economic and Social Systems. (World Scientific, Singapore, 2002)Google Scholar
  15. 15.
    R.K. Sawyer, Social Emergence: Societies As Complex Systems (Cambridge University, Cambridge, 2005)Google Scholar
  16. 16.
    A.S. Mikhailov, V. Calenbuhr, From Cells to Societies. (Springer, Berlin, 2006)Google Scholar
  17. 17.
    B. Blasius, J. Kurths, L. Stone Complex Population Dynamics. (World Scientific, Singapore, 2007)Google Scholar
  18. 18.
    M. Batty, Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. (MIT Press, Cambridge, 2007)Google Scholar
  19. 19.
    S. Albeverio, D. Andrey, P. Giordano, A. Vancheri, The Dynamics of Complex Urban Systems. (Physica, Heidelberg, 2008)Google Scholar
  20. 20.
    K. Mainzer, Thinking in Complexity: The Computational Dynamics of Matter, Mind, and Mankind. (Springer, Berlin, 2007)Google Scholar
  21. 21.
    J.H. Miller, S.E. Page, Complex Adaptive Systems: An Introduction to Computational Models of Social Life. (Princeton University, Princeton, NJ, 2007)Google Scholar
  22. 22.
    J.M. Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling. (Princeton University, Princeton, NJ, 2007)Google Scholar
  23. 23.
    B. Castellani, F. Hafferty, Sociology and Complexity Science. (Springer, Berlin, 2009)Google Scholar
  24. 24.
    D. Lane, D. Pumain, S.E. van der Leeuw, G. West, eds. Complexity Perspectives in Innovation and Social Change. (Springer, Berlin, 2009)Google Scholar
  25. 25.
    C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)Google Scholar
  26. 26.
    P.W. Anderson, K. Arrow, D. Pines, eds. The Economy as an Evolving Complex System. (Westview, Boulder, Menzies, NK, 1988)Google Scholar
  27. 27.
    H.W. Lorenz, Nonlinear Dynamical Equations and Chaotic Economy. (Springer, Berlin, 1993)Google Scholar
  28. 28.
    P. Krugman, The Self-Organizing Economy. (Blackwell, Malden, MA, 1996)Google Scholar
  29. 29.
    W.B. Arthur, S.N. Durlauf, D.A. Lane, The Economy as an Evolving Complex System II. (Westview, Boulder, Menzies, NK, 1997)Google Scholar
  30. 30.
    R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance. (Cambridge University, Cambridge, 1999)Google Scholar
  31. 31.
    D. Colander, ed. The Complexity Vision and the Teaching of Economics. (Elgar, Cheltenham, UK, 2000)Google Scholar
  32. 32.
    J.D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World. (Boston, McGraw Hill, 2000)Google Scholar
  33. 33.
    T. Puu, Attractors, Bifurcations, & Chaos. Nonlinear Phenomena in Economics. (Springer, Berlin, 2003)Google Scholar
  34. 34.
    L.E. Blume, S.N. Durlauf, eds. The Economy as an Evolving Complex System III. (Oxford University, Oxford, 2006)Google Scholar
  35. 35.
    B.K. Chakrabarti, A. Chakraborti, A. Chatterjee, Econophysics and Sociophysics. (Wiley, New York, 2006)Google Scholar
  36. 36.
    A. Chatterjee, B.K. Chakrabarti, eds. Econophysics of Markets and Business Networks. (Springer, Milan, 2007)Google Scholar
  37. 37.
    A.C.-L. Chian, Complex Systems Approach to Economic Dynamics. (Springer, Berlin, 2007)Google Scholar
  38. 38.
    V. Lacayo, What complexity science teaches us about social change, see
  39. 39.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. (Wiley, New York, 1977)Google Scholar
  40. 40.
    A.S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer, Berlin, 1991)Google Scholar
  41. 41.
    A.S. Mikhailov, A.Y. Loskutov, Foundations of Synergetics II: Complex Patterns. (Springer, Berlin, 1991)Google Scholar
  42. 42.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. (Westview Press, 2001)Google Scholar
  43. 43.
    N. Boccara, Modeling Complex Systems. (Springer, Berlin, 2003)Google Scholar
  44. 44.
    J. Jost, Dynamical Systems: Examples of Complex Behaviour. (Springer, Berlin, 2005)Google Scholar
  45. 45.
    G. Nicolis, Foundations of Complex Systems. (World Scientific, New York, 2007)Google Scholar
  46. 46.
    P. Érdi, Complexity Explained. (Springer, Berlin, 2007)Google Scholar
  47. 47.
    C. Gros, Complex and Adaptive Dynamical Systems. (Springer, Berlin, 2008)Google Scholar
  48. 48.
    M. Schroeder, Fractals, Chaos, Power Laws. (Dover, 2009)Google Scholar
  49. 49.
    A. Saichev, Y. Malevergne, D. Sornette, Theory of Zipf’s Law and Beyond. (Springer, Berlin, 2010)Google Scholar
  50. 50.
    D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)Google Scholar
  51. 51.
    D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the control of traffic intersections. Eur. Phys. J. B 70(2), 257–274 (2009)Google Scholar
  52. 52.
    D. Dorner, The Logic Of Failure: Recognizing and Avoiding Error in Complex Situations. (Basic, New York, 1997)Google Scholar
  53. 53.
    D. Helbing, Managing complexity in socio-economic systems. Eur. Rev. 17(2), 423–438 (2009)Google Scholar
  54. 54.
    R.H. Thaler, ed. Advances in Behavioral Finance. (Russell Sage Foundation, New York, 1993)Google Scholar
  55. 55.
    C.F. Camerer, G. Loewenstein, M. Rabin, eds. Advances in Behavioral Economics. (Princeton University, Princeton, NJ, 2004)Google Scholar
  56. 56.
    R.H. Thaler, ed. Advances in Behavioral Finance, Vol. II. (Princeton University, Princeton, NJ, 2005)Google Scholar
  57. 57.
    M. Schönhof, D. Helbing, Empirical features of congested traffic states and their implications for traffic modeling. Transport. Sci. 41(2), 135–166 (2007)Google Scholar
  58. 58.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena. (Oxford University, 1987)Google Scholar
  59. 59.
    N. Goldenfeld, Lectures On Phase Transitions and the Renormalization Group. (Westview, Boulder, CO, 1992)Google Scholar
  60. 60.
    E.C. Zeeman, ed. Catastrophe Theory. (Addison-Wesley, London, 1977)Google Scholar
  61. 61.
    T. Poston, I. Stewart, Catastrophe Theory and Its Applications. (Dover, Mineola, 1996)Google Scholar
  62. 62.
    M. Gladwell, The Tipping Point: How Little Things Can Make a Big Difference. (Back Bay, Boston, 2002)Google Scholar
  63. 63.
    V.I. Arnol’d, G.S. Wassermann, R.K. Thomas, Catastrophe Theory. (Springer, Berlin, 2004)Google Scholar
  64. 64.
    P. Doreian, F.N. Stokman, eds. Evolution of Social Networks. (Routledge, Amsterdam, 1997)Google Scholar
  65. 65.
    D.J. Watts, Small Worlds. (Princeton University, Princeton, NJ, 1999)Google Scholar
  66. 66.
    B.A. Huberman, The Laws of the Web: Patterns in the Ecology of Information. (MIT Press, Cambridge, 2001)Google Scholar
  67. 67.
    R. Albert, L.-A. Barabasi, Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)Google Scholar
  68. 68.
    S. Bornholdt, H.G. Schuster, Handbook of Graphs and Networks: From the Genome to the Internet. (Wiley-VCH, Germany 2003)Google Scholar
  69. 69.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks. (Oxford University, Oxford 2003)Google Scholar
  70. 70.
    P.J. Carrington, J. Scott, S. Wassermann, Models and Methods in Social Network Analysis. (Cambridge University, New York, 2005)Google Scholar
  71. 71.
    M. Newman, A.-L. Barabasi, D.J. Watts, eds. The Structure and Dynamics of Networks. (Princeton University, Princeton, NJ, 2006)Google Scholar
  72. 72.
    F. Vega-Redondo, Complex Social Networks. (Cambridge University, Cambridge, 2007)Google Scholar
  73. 73.
    M.O. Jackson, Social and Economic Networks. (Princeton University, Princeton, NJ, 2008)Google Scholar
  74. 74.
    J. Bruggeman, Social Networks. (Routledge, New York, 2008)Google Scholar
  75. 75.
    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks. (Cambridge University, Cambridge, 2008)Google Scholar
  76. 76.
    J. Reichardt, Structure in Complex Networks. (Springer, Berlin, 2009)Google Scholar
  77. 77.
    A.K. Naimzada, S. Stefani, A. Torriero, eds. Networks, Topology, and Dynamics. (Springer, Berlin, 2009)Google Scholar
  78. 78.
    A. Pyka, A. Scharnhorst, eds. Innovation Networks. (Springer, Berlin, 2009)Google Scholar
  79. 79.
    T. Gross, H. Sayama, eds. Adaptive Networks. (Springer, Berlin, 2009)Google Scholar
  80. 80.
    I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Transient dynamics increasing network vulnerability to cascading failures. Phys. Rev. Lett. 100, 218701 (2008)Google Scholar
  81. 81.
    J. Lorenz, S. Battiston, F. Schweitzer, Systemic risk in a unifying framework for cascading processes on networks. Eur. Phys. J. B 71(4), 441–460 (2009)Google Scholar
  82. 82.
    D. Helbing, C. Khnert, Assessing interaction networks with applications to catastrophe dynamics and disaster management. Physica A 328, 584–606 (2003)Google Scholar
  83. 83.
    L. Buzna, K. Peters, D. Helbing, Modelling the dynamics of disaster spreading in networks. Physica A 363, 132–140 (2006)Google Scholar
  84. 84.
    L. Buzna, K. Peters, H. Ammoser, C. Kühnert, D. Helbing, Efficient response to cascading disaster spreading. Phys. Rev. E 75, 056107 (2007)Google Scholar
  85. 85.
    D. Helbing, H. Ammoser, C. Khnert, Disasters as extreme events and the importance of network interactions for disaster response management. In [19], pp. 319–348 (2005)Google Scholar
  86. 86.
    J. Reason, Human Error. (Cambridge University, Cambridge, 1990)Google Scholar
  87. 87.
    J.R. Chiles, Inviting Disaster: Lessons From the Edge of Technology. (Harper, New York, 2002)Google Scholar
  88. 88.
    P. Bak, How nature works: the science of self-organized criticality. (Springer, Berlin, 1999)Google Scholar
  89. 89.
    H.J. Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. (Cambridge University, Cambridge, 1998)Google Scholar
  90. 90.
    D. Helbing, Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)Google Scholar
  91. 91.
    D. de Martino, L. Dall’Asta, G. Bianconi, M. Marsili, Congestion phenomena on complex networks. Phys. Rev. E 79, 015101 (2009)Google Scholar
  92. 92.
    P.A. Davidson, Turbulence. (Cambridge University, Cambridge, 2004)Google Scholar
  93. 93.
    H.G. Schuster, W. Just, Deterministic Chaos. (Wiley-VCH, Weinheim, 2005)Google Scholar
  94. 94.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry. (North-Holland, Amsterdam, 2007)Google Scholar
  95. 95.
    G. Deco, B. Schürmann, Information Dynamics. (Springer, Berlin, 2001)Google Scholar
  96. 96.
    R.A. Jones, Self-fulfilling Prophecies: Social, Psychological, and Physiological Effects of Expectancies. (Lawrence Erlbaum, 1981)Google Scholar
  97. 97.
    R.E.A. Farmer, Macroeconomics of Self-fulfilling Prophecies. (MIT Press, Cambridge, MA, 1999)Google Scholar
  98. 98.
    J.D. Murray, Mathematical Biology, Vol. I. (Springer, Berlin, 2003)Google Scholar
  99. 99.
    M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, G. Sugihara, Early-warning signals for critical transitions. Nature 461, 53–59 (2009)Google Scholar
  100. 100.
    W. Michiels, S.-I. Niculescu, Stability and Stabilization of Time-Delay Systems. siam – Society for Industrial and Applied Mathematics, (Philadelphia, USA, 2007)Google Scholar
  101. 101.
    N.N. Taleb, The Black Swan: The Impact of the Highly Improbable. (Random House, New York, 2007)Google Scholar
  102. 102.
    E.E. Peters, Chaos and Order in the Capital Markets. (Wiley, New York, 1996)Google Scholar
  103. 103.
    S. Claessens, K.J. Forbes, eds. International Financial Contagion. (Kluwer Academic, Dordrecht, 2001)Google Scholar
  104. 104.
    K. Ilinsiki, Physics of Finance. Gauge Modelling in Non-Equilibrium Pricing. (Wiley, Chichester, 2001)Google Scholar
  105. 105.
    B.M. Roehner, Patterns of Speculation. (Cambridge University, Cambridge, 2002)Google Scholar
  106. 106.
    D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton University, Princeton, NJ, 2004)Google Scholar
  107. 107.
    B. Mandelbrot, R.L. Hudson, The Misbehavior of Markets: A Fractal View of Financial Turbulence. (Basic, New York, 2006)Google Scholar
  108. 108.
    M. Faggini, T. Lux, eds. Coping with the Complexity of Economics. (Springer, Milan, 2009)Google Scholar
  109. 109.
    R.J. Breiding, M. Christen, D. Helbing Lost robustness. Naissance Newsletter, 8–14 (April 2009)Google Scholar
  110. 110.
    R.M. May, S.A. Levin, G. Sugihara, Ecology for bankers. Nature 451, 893–895 (2008)Google Scholar
  111. 111.
    S. Battiston, D. Delli Gatti, M. Gallegati, B. C.N. Greenwald, J.E. Stiglitz, Liaisons dangereuses: Increasing connectivity, risk sharing and systemic risk, (2009) see
  112. 112.
    I. Kondor, I. Varga-Haszonits, Divergent estimation error in portfolio optimization and in linear regression. Eur. Phys. J. B 64, 601–605 (2008)Google Scholar
  113. 113.
    G.A. Akerlof, R.J. Shiller, Animal Spirits. How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism. (Princeton University, Princeton, NJ, 2009)Google Scholar
  114. 114.
    G. Le Bon, The Crowd: A Study of the Popular Mind. (Dover, New York, 2002)Google Scholar
  115. 115.
    W. Trotter, Instincts of the Herd in Peace and War. (Cosimo Classics, New York, 2005)Google Scholar
  116. 116.
    C. Mackay, Extraordinary popular delusions and the madness of crowds (2003)Google Scholar
  117. 117.
    J. Surowiecki, The Wisdom of Crowds. (Anchor, New York, 2005)Google Scholar
  118. 118.
    P. Ball, Critical Mass. (Arrow, London, 2004)Google Scholar
  119. 119.
    R. Falcone, K.S. Barber, J. Sabater-Mir, M.P. Singh, eds. Trust in Agent Societies. (Springer, Berlin, 2009)Google Scholar
  120. 120.
    S. Thurner, J.D. Farmer, J. Geanakoplos, Leverage causes fat tails and clustered volatility. (2009) E-print
  121. 121.
    R. Axelrod, M.D. Cohen, Harnessing Complexity: Organizational Implications of a Scientific Frontier. (Basic, New York, 2001)Google Scholar
  122. 122.
    H. Eisner, Managing Complex Systems: Thinking Outside the Box (Wiley, New York 2005)Google Scholar
  123. 123.
    L. Hurwicz, S. Reiter, Designing Economic Mechanisms. (Cambridge University, New York, 2006)Google Scholar
  124. 124.
    M. Salzano, D. Colander, eds. Complexity Hints for Economic Policy. (Springer, Berlin, 2007)Google Scholar
  125. 125.
    E. Schöll, H.G. Schuster, eds. Handbook of Chaos Control. (Wiley-VCH, Weinheim, 2008)Google Scholar
  126. 126.
    D. Grass, J.P. Caulkins, G. Feichtinger, G. Tragler, D.A. Behrens, Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption, and Terror. (Springer, Berlin, 2008)Google Scholar
  127. 127.
    D. Helbing, eds. Managing Complexity: Insights, Concepts, Applications. (Springer, Berlin, 2008)Google Scholar
  128. 128.
    L.A. Cox Jr., Risk Analysis of Complex and Uncertain Systems. (Springer, New York, 2009)Google Scholar
  129. 129.
    M. Gallegati, A. Kirman, eds. Beyond the Representative Agent. (Edward Elgar, Cheltenham, UK 1999)Google Scholar
  130. 130.
    A. Consiglio, eds. Artificial Markets Modeling. (Springer, Berlin, 2007)Google Scholar
  131. 131.
    M. Aoki, H. Yoshikawa, Reconstructing Macroeconomics. (Cambridge University Press, Cambridge, 2007)Google Scholar
  132. 132.
    K. Schredelseker, F. Hauser, eds. Complexity and Artificial Markets. (Springer, Berlin, 2008)Google Scholar
  133. 133.
    D. Delli Gatti, E. Gaffeo, M. Gallegati, G. Giulioni, A. Palestrini, Emergent Macroeconomics. An Agent-Based Approach to Business Fluctuations. (Springer, Milan, 2008)Google Scholar
  134. 134.
    J. Surowiecki, The Wisdom of Crowds. (Anchor, New York, 2005)Google Scholar
  135. 135.
    H. Rheingold, Smart Mobs. (Perseus, Cambridge, MA, 2003)Google Scholar
  136. 136.
    D. Floreano, C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. (MIT Press, Cambridge, MA, 2008)Google Scholar
  137. 137.
    D. Helbing, A. Deutsch, S. Diez, K. Peters, Y. Kalaidzikis, K. Padberg, S. Lämmer, A. Johansson, G. Breier, F. Schulze, M. Zerial, BioLogistics and the struggle for efficiency: Concepts and perspectives. Advances in Complex Systems, (2009); in print, see e-print
  138. 138.
    S. Lämmer, D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks. J. Stat. Phys. (JSTAT), P04019 (2008)Google Scholar
  139. 139.
    K. Windt, T. Philipp, F. Böse, Complexity cube for the characterization of complex production systems. Int. J. Comput. Integrated Manuf. 21(2), 195–200 (2007)Google Scholar
  140. 140.
    D. Helbing, W. Yu, H. Rauhut, Self-organization and emergence in social systems: Modeling the coevolution of social environments and cooperative behavior, (2009); see e-print
  141. 141.
    E. Ostrom, Governing the Commons. The Evolution of Institutions for Collective Action. (Cambridge University, New York, 1990)Google Scholar
  142. 142.
    G. Hardin, Living within Limits: Ecology, Economics, and Population Taboos. (Oxford University, New York, 1995)Google Scholar
  143. 143.
    J.A. Baden, D.S. Noonan, eds. Managing the Commons. (Indiana University, Bloomington, Indiana, 1998)Google Scholar
  144. 144.
    GIACS Complexity Roadmap, see
  145. 145.
    The Complex Systems Society Roadmap, see
  146. 146.
  147. 147.
    EU report on Tackling Complexity in Science, see
  148. 148.
    OECD Global Science Forum report on Applications of Complexity Science for Public Policy, see
  149. 149.
    J.A. Tainter, The Collapse of Complex Societies. (Cambridge University, Cambridge, 1988)Google Scholar
  150. 150.
    J.E. Stiglitz, Globalization and Its Discontents. (Norton, New York, 2003)Google Scholar
  151. 151.
    D. Meadows, J. Randers, D. Meadows, Limits to Growth. The 30-Year Update. (Chelsea Green Publishing, Withe River Junction, Vermont, 2004)Google Scholar
  152. 152.
    J. Diamond, Collapse. How Societies Choose to Fall or Succeed. (Penguin, New York, 2005)Google Scholar
  153. 153.
    R. Costanza, L.J. Graumlich, W. Steffen, eds. Sustainability of Collapse? (MIT Press, Cambridge, MA, 2007)Google Scholar
  154. 154.
    P. Krugman, The Return of Depression Economics and the Crisis of 2008. (Norton, New York, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dirk Helbing
    • 1
  1. 1.CLU E1ETH ZurichZurichSwitzerland

Personalised recommendations