Skip to main content

Collective Response of Self-Organised Clusters of Mechanosensitive Channels

  • Chapter
  • First Online:
  • 531 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we aim to determine how the spatial organization can affect the function of membrane channels, which are regulated by membrane elastic forces. We map the short-range elastic interactions into a discretized system of interacting spins, from which the spatial distribution of the channels is obtained, and its effect on the gating dynamics. We illustrate the analysis by considering the special type of channels activated directly by membrane tension called mechanosensitive channels, in E. coli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The diameter of a single lipid is approximately \(0.75 \,\hbox{nm}.\)

References

  1. Destainville, N.: Cluster phases of membrane proteins. Phys. Rev. E 77(1), 011905 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  2. Booth, I.R., Edwards, M.D., Black, S., Schumann, U., Miller, S.: Mechanosensitive channels in bacteria: signs of closure? Nat. Rev. Microbiol. 5(6), 431–440 (2007)

    Article  Google Scholar 

  3. Guseva, K., Thiel, M., Booth, I., Miller, S., Grebogi, C., de Moura, A.: Collective response of self-organised clusters of mechanosensitive channels. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 18, 020901 (2011)

    Google Scholar 

  4. Kung, C.: A possible unifying principle for mechanosensation. Nature 436(7051), 647–654 (2005)

    Article  ADS  Google Scholar 

  5. Hamill, O.P.: Mechanosensitive Ion Channels. Academic Press, New York (2007)

    Google Scholar 

  6. Kamkin, A.: Mechanosensitive Ion Channels, 1st edn. Springer, Heidelberg (2007)

    Google Scholar 

  7. Arnadóttir, J., Chalfie, M.: Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111–137 (2010)

    Google Scholar 

  8. Hamill, O.P., Martinac, B.: Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81(2), 685–740 (2001)

    Google Scholar 

  9. Phillips, R., Ursell, T., Wiggins, P., Sens, P.: Emerging roles for lipids in shaping membrane-protein function. Nature 459(7245) 379–385 (2009)

    Google Scholar 

  10. Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T., Rees, D.C.: Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282(5397), 2220–2226 (1998)

    Google Scholar 

  11. Sukharev, S., Betanzos, M., Chiang, C.-S., Robert Guy, H.: The gating mechanism of the large mechanosensitive channel MscL. Nature 409(6821), 720–724 (2001)

    Article  ADS  Google Scholar 

  12. Sukharev, S., Durell, S.R., Guy, H.R.: Structural models of the MscL gating mechanism. Biophys. J. 81(2), 917–936 (2001)

    Article  Google Scholar 

  13. Cruickshank, C.: Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73(4), 1925–1931 (1997)

    Article  ADS  Google Scholar 

  14. Sukharev, S.I., Martinac, B., Arshavsky, V.Y., Kung, C.: Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65(1), 177–183 (1993)

    Article  ADS  Google Scholar 

  15. Perozo, E.: Gating prokaryotic mechanosensitive channels. Nat. Rev. Mol. Cell. Biol. 7(2), 109–119 (2006)

    Article  Google Scholar 

  16. Bass, R.B., Strop, P., Barclay, M., Rees, D.C.: Crystal structure of Escherichia coli MscS a voltage-modulated and mechanosensitive channel. Science 298(5598), 1582–1587 (2002)

    Google Scholar 

  17. Wang, W., Black, S.S., Edwards, M.D., Miller, S., Morrison, E.L., Bartlett, W., Dong, C., Naismith, J.H., Booth, I.R.: The structure of an open form of an E. coli mechanosensitive channel at 3.45 Å resolution. Science 321(5893), 1179–1183 (2008)

    Google Scholar 

  18. Powl, A.M., East, J.M., Lee, A.G.: Lipid–protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochem. 42(48), 14306–14317 (2003)

    Google Scholar 

  19. Perozo, E., Kloda, A., Marien Cortes, D., Martinac, B.: Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Mol. Biol. 9(9), 696–703 (2002)

    Article  Google Scholar 

  20. Martinac, B., Buechner, M., Delcour, A.H., Adler, J., Kung, C.: Pressure-sensitive ion channel in Escherichia coli. Proc. Nat. Acad. Sci. U. S. A. 84(8), 2297–2301 (1987)

    Article  ADS  Google Scholar 

  21. Norman, C., Liu, Z.-.W., Rigby, P., Raso, A., Petrov, Y., Martinac, B.: Visualisation of the mechanosensitive channel of large conductance in bacteria using confocal microscopy. Eur. Biophys. J. 34(5), 396–402 (2005)

    Article  Google Scholar 

  22. Haswell, E.S., Meyerowitz, E.M.: MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16(1), 1–11 (2006)

    Article  Google Scholar 

  23. Zhang, S., Arnadottir, J., Keller, C., Caldwell, G.A., Yao, C. A., Chalfie, M.: MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr. Biol. 14(21), 1888–1896 (2004)

    Google Scholar 

  24. Ursell, T., Huang, K.C., Peterson, E. Phillips, R.: Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput. Biol. 3(5), e81 (2007)

    Google Scholar 

  25. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  26. Weiss, T.F.: Cellular Biophysics, vol. 1, Transport. The MIT Press, Cambridge (1996)

    Google Scholar 

  27. Casimir, H.B.G., Polder, D.: The influence of retardation on the London-van der waals forces. Phys. Rev. 73(4), 360 (1948)

    Article  ADS  MATH  Google Scholar 

  28. Goulian, M., Bruinsma, R., Pincus, P.: Long-range forces in heterogeneous fluid membranes. Europhys. Lett. (EPL) 22(2), 145–150 (1993)

    Article  ADS  Google Scholar 

  29. Bruinsma, R., Pincus, P.: Protein aggregation in membranes. Curr. Opin. Solid State Mater. Sci. 1(3), 401–406 (1996)

    Article  ADS  Google Scholar 

  30. Lipowsky, R., Sackmann, E.: Structure and Dynamics of Membranes. Elsevier, Amsterdam (1995)

    Google Scholar 

  31. Landau L.D., Lifshitz E.M.: Statistical Physics, part 1, vol. 5, 3rd edn. Butterworth-Heinemann, Oxford (1980)

    Google Scholar 

  32. Marrink, S.J., de Vries, A.H., Mark, A.E.: Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108(2), 750–760 (2004)

    Article  Google Scholar 

  33. West, B., Brown, F., Schmid, F.: Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. Biophys. J. 96(1), 101–115 (2009)

    Article  ADS  Google Scholar 

  34. de Meyer, F. J.-M, Venturoli, M., Smit, B.: Molecular simulations of lipid-mediated protein–protein interactions. Biophys. J. 95(4), 1851–1865 (2008)

    Article  ADS  Google Scholar 

  35. Landau L.D., Lifshitz E.M.: Mechanics, vol. 1, 3rd edn. Butterworth-Heinemann, Oxford (1976)

    Google Scholar 

  36. Newman, M.E.J., Barkema G.T.: Monte Carlo Methods in Statistical Physics. Oxford University Press, Oxford (1999)

    Google Scholar 

  37. Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press, USA (1992)

    MATH  Google Scholar 

  38. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3–4), 117 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Phillips, R., Kondev, J., Theriot, J.: Physical Biology of the Cell. Garland Science, New York (2008)

    Google Scholar 

  40. Shapovalov, G., Lester, H.A.: Gating transitions in bacterial ion channels measured at 3 microns resolution. J. Gen. Physiol 124(2), 151–161 (2004)

    Article  Google Scholar 

  41. Ramadurai, S., Holt, V.K.A., van den Bogaart, G., Killian, J.A., Poolman, B.: Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131(35), 12650–12656 (2009)

    Article  Google Scholar 

  42. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  ADS  Google Scholar 

  43. Rikvold, P.A., Tomita, H., Miyashita, S., Sides, S.W.: Metastable lifetimes in a kinetic Ising model: dependence on field and system size. Phys. Rev. E 49(6):5080 (1994)

    Google Scholar 

  44. Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the lambda transition and phase separation in \(\hbox{He}^{3}\text{--}\hbox{He}^{4}\) mixtures. Phys. Rev. A 4(3):1071 (1971)

    Google Scholar 

  45. Lundbæk, J.A., Collingwood, S.A., Ingólfsson, H.I., Kapoor, R., Andersen, O.S.: Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J. R. Soc. Interface 7(44), 373–395 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Guseva .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guseva, K. (2012). Collective Response of Self-Organised Clusters of Mechanosensitive Channels. In: Formation and Cooperative Behaviour of Protein Complexes on the Cell Membrane. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23988-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23988-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23987-8

  • Online ISBN: 978-3-642-23988-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics