Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 841))

Abstract

What is matter made of? The search for its ultimate constituents has always inspired the imagination. Since antiquity, man has tried to explain the composite macroscopic world in terms of indivisible building blocks on a microscopic scale. Beneath the complexity and irregularity which surround us, we hope to find a hidden world of greater simplicity, in which primordial parts move according to basic laws. This idea turned out to be fruitful beyond all expectations, so that today we find it natural to derive the properties of matter from the dynamics which govern the interaction between some fundamental building blocks.

So there must be an ultimate limit to bodies, beyond perception by our senses. This limit is without parts, is the smallest possible thing. It can never exist by itself, but only as primordial part of a larger body, from which no force can tear it loose.

Titus Lucretius Carus: De rerum natura,

liber primus 599, ∼ 55 B.C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilczek, F.: In: Zerwas, P.M., Kastrup, H.A. (eds.) QCD—20 Years Later. World Scientific, Singapore (1993)

    Google Scholar 

  2. Gell-Mann, M.: Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  3. Zweig, G.: Int. J. Mod. Phys. A 25, 3863 (2010) and earlier references given there

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Pati, J.C., Salam, A.: Phys. Rev. D 10, 275 (1974)

    Article  ADS  Google Scholar 

  5. Buchmüller, W.: In: Mitter, H. Plessas, W. (eds.) Nucleon-Nucleon and Nucleon-Antinucleon Interactions. Springer, Wien (1985)

    Google Scholar 

  6. Finkelstein, R.J.: Int. J. Mod. Phys. A 22, 4467 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Weinberg, S.: Rev. Mod. Phys. 52, 515 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  8. Salam, A.: Rev. Mod. Phys. 52, 525 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. Glashow, S.: Rev. Mod. Phys. 52, 529 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  10. Kane, G.: Modern Elementary Particle Physics. Addison-Wesley, Reading (1993)

    Google Scholar 

  11. Pomeranchuk, I.Ya.: Dokl. Akad. Nauk SSSR 78, 889 (1951)

    Google Scholar 

  12. Mott, N.F.: Proc. Phys. Soc. (Lond.) A 62, 416 (1949)

    Article  ADS  Google Scholar 

  13. Dixit, V.V.: Mod. Phys. Lett. A 5, 227 (1990)

    Article  ADS  Google Scholar 

  14. Satz, H.: Nucl. Phys. A 418, 447c (1984)

    Article  ADS  Google Scholar 

  15. Castorina, P., Gavai, R.V., Satz, H., Eur. Phys. J. C 69, 169 (2010)

    Article  ADS  Google Scholar 

  16. Anselmino, M., Ekelin, S., Lichtenberg, D.B., Predazzi, E.: Rev. Mod. Phys. 65, 1199 (1993)

    Article  ADS  Google Scholar 

  17. Rajagopal, K., Wilczek, F.: The condensed matter physics of QCD. hep-ph/0011333

  18. Alford, M.: Annu. Rev. Nucl. Part. Sci. 51, 131 (2001)

    Article  ADS  Google Scholar 

  19. Alford, M., et al.: Rev. Mod. Phys. 80, 1455 (2008)

    Article  ADS  Google Scholar 

  20. Wong, C.-Y.: Introduction to High Energy Heavy Ion Collisions. World Scientific, Singapore (1994)

    Book  Google Scholar 

  21. Csernai, L.P.: Introduction to Relativistic Heavy Ion Collisions. Wiley, New York (1994)

    Google Scholar 

  22. Yagi, K., Hatsuda, T., Miake, Y.: Quark-Gluon Plasma. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  23. Vogt, R.L.: Ultrarelativistic Heavy Ion Collisions. Elsevier, Amsterdam (2007)

    Google Scholar 

  24. Sarkar, S., Satz, H., Sinha, B. (eds.): The Physics of the Quark-Gluon Plasma. Lect. Notes in Physics, vol. 785. Springer, Berlin (2010)

    MATH  Google Scholar 

  25. Fiorkowski, W.: Phenomenology of Ultra-Relativistic Heavy-Ion Collisions. World Scientific, Singapore (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Satz, H. (2012). The Analysis of Dense Matter. In: Extreme States of Matter in Strong Interaction Physics. Lecture Notes in Physics, vol 841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23908-3_1

Download citation

Publish with us

Policies and ethics