Skip to main content

Abelian-by-Central Galois Theory of Prime Divisors

  • Conference paper
  • First Online:
Book cover The Arithmetic of Fundamental Groups

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 2))

Abstract

In this manuscript I show how to recover some of the inertia structure of (quasi) divisors of a function field K | k over an algebraically closed base field k from its maximal mod ℓabelian-by-central Galois theory of K, provided td(K | k) > 1. This is a first technical step in trying to extend Bogomolov’s birational anabelian program beyond the full pro- situation, which corresponds to the limit case mod .

Supported by NSF grant DMS-0801144.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. K. Arason, R. Elman, and B. Jacob. Rigid elements, valuations, and realization of Witt rings. J. Algebra, 110:449–467, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. A. Bogomolov. On two conjectures in birational algebraic geometry. In A. Fujiki et al., editors, Algebraic Geometry and Analytic Geometry, ICM-90 Satellite Conference Proceedings. Springer Verlag, Tokyo, 1991.

    Google Scholar 

  3. N. Bourbaki. Algèbre commutative. Hermann Paris, 1964.

    Google Scholar 

  4. F. A. Bogomolov and Yu. Tschinkel. Commuting elements in Galois groups of function fields. In F. A. Bogomolov and L. Katzarkov, editors, Motives, Polylogarithms and Hodge theory, pages 75–120. International Press, 2002.

    Google Scholar 

  5. F. Bogomolov and Yu. Tschinkel. Reconstruction of function fields. Geometric And Functional Analysis, 18:400–462, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Endler and A. J. Engler. Fields with Henselian valuation rings. Math. Z., 152:191–193, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Grothendieck. Brief an Faltings (27/06/1983). In L. Schneps and P. Lochak, editors, Geometric Galois Action 1, volume 242 of LMS Lecture Notes, pages 49–58. Cambridge, 1997.

    Google Scholar 

  8. A. Grothendieck. Esquisse d’un programme. In L. Schneps and P. Lochak, editors, Geometric Galois Action 1, volume 242 of LMS Lecture Notes, pages 5–48. Cambridge, 1997.

    Google Scholar 

  9. J. Koenigsmann. Solvable absolute Galois groups are metabelian. Inventiones Math., 144:1–22, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Mahé, J. Mináč, and T. L. Smith. Additive structure of multiplicative subgroups of fields and Galois theory. Doc. Math., 9:301–355, 2004.

    MATH  MathSciNet  Google Scholar 

  11. J. Neukirch. Kennzeichnung der p-adischen und endlichen algebraischen Zahlkörper. Inventiones Math., 6:269–314, 1969.

    Article  MathSciNet  Google Scholar 

  12. J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2nd edition, 2008.

    Google Scholar 

  13. F. Pop. On Grothendieck’s conjecture of birational anabelian geometry. Ann. of Math., 138:145–182, 1994.

    Article  Google Scholar 

  14. F. Pop. Glimpses of Grothendieck’s anabelian geometry. In L. Schneps and P. Lochak, editors, Geometric Galois Action 1, volume 242 of LMS Lecture Notes, pages 113–126. Cambridge, 1997.

    Google Scholar 

  15. F. Pop. Pro- Galois theory of Zariski prime divisors. In Débès and others, editor, Luminy Proceedings Conference, SMF No 13. Hérmann, Paris, 2006.

    Google Scholar 

  16. F. Pop. Pro- abelian-by-central Galois theory of Zariski prime divisors. Israel J. Math., 180:43–68, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Pop. On the birational anabelian program initiated by Bogomolov I. Inventiones Math., pages 1–23, 2011.

    Google Scholar 

  18. T. Szamuely. Groupes de Galois de corps de type fini (d’après Pop). Astérisque, 294:403–431, 2004.

    MathSciNet  Google Scholar 

  19. A. Topaz.  ∕  commuting liftable pairs. Manuscript.

    Google Scholar 

  20. K. Uchida. Isomorphisms of Galois groups of solvably closed Galois extensions. Tôhoku Math. J., 31:359–362, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Ware. Valuation rings and rigid elements in fields. Can. J. Math., 33:1338–1355, 1981.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pop, F. (2012). Abelian-by-Central Galois Theory of Prime Divisors. In: Stix, J. (eds) The Arithmetic of Fundamental Groups. Contributions in Mathematical and Computational Sciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23905-2_10

Download citation

Publish with us

Policies and ethics