Skip to main content

Heidelberg Lectures on Coleman Integration

  • Conference paper
  • First Online:

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 2))

Abstract

Coleman integration is a way of associating with a closed one-form on a p-adic space a certain locally analytic function, defined up to a constant, whose differential gives back the form. This theory, initially developed by Robert Coleman in the 1980s and later extended by various people including the author, has now found various applications in arithmetic geometry, most notably in the spectacular work of Kim on rational points. In this text we discuss two approaches to Coleman integration, the first is a semi-linear version of Coleman’s original approach, which is better suited for computations. The second is the author’s approach via unipotent isocrystals, with a simplified and essentially self-contained presentation. We also survey many applications of Coleman integration and describe a new theory of integration in families.

Part of the research described in these lectures was conducted with the support of the Israel Science Foundation, grant number: 1129/08, whose support I would like to acknowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bannai. Syntomic cohomology as a p-adic absolute Hodge cohomology. Math. Z., 242(3):443–480, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Baldassarri and P. Berthelot. On Dwork cohomology for singular hypersurfaces. In Geometric aspects of Dwork theory. Vol. I, II, pages 177–244. Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

    Google Scholar 

  3. A. Besser, P. Buckingham, R. de Jeu, and X.-F. Roblot. On the p-adic Beilinson conjecture for number fields. Pure Appl. Math. Q., 5(1, part 2):375–434, 2009.

    Google Scholar 

  4. A. Beilinson and P. Deligne. Motivic polylogarithms and Zagier’s conjecture. Unpublished manuscript, 1992.

    Google Scholar 

  5. A. Besser and R. de Jeu. The syntomic regulator for the K-theory of fields. Ann. Sci. École Norm. Sup. (4), 36(6):867–924, 2003.

    Google Scholar 

  6. A. A. Beilinson. Higher regulators and values of L-functions. J. Sov. Math., 30:2036–2070, 1985.

    Article  MATH  Google Scholar 

  7. P. Berthelot. Géométrie rigide et cohomologie des variétés algébriques de caractéristique p. Mém. Soc. Math. France (N.S.), (23):3, 7–32, 1986. Introductions aux cohomologies p-adiques (Luminy, 1984).

    Google Scholar 

  8. P. Berthelot. Cohomologie rigide et cohomologie rigide a supports propres, premièr partie. Preprint 96-03 of IRMAR, the university of Rennes I, available online at http://www.maths.univ-rennes1.fr/ berthelo/ , 1996.

    Google Scholar 

  9. P. Berthelot. Finitude et pureté cohomologique en cohomologie rigide. Invent. Math., 128(2):329–377, 1997. With an appendix in English by A. J. de Jong.

    Google Scholar 

  10. V. G. Berkovich. Integration of one-forms on p-adic analytic spaces, volume 162 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2007.

    Google Scholar 

  11. A. Besser. A generalization of Coleman’s p-adic integration theory. Inv. Math., 142(2):397–434, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Besser. Syntomic regulators and p-adic integration I: rigid syntomic regulators. Israel Journal of Math., 120:291–334, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Besser. Syntomic regulators and p-adic integration II: K 2 of curves. Israel Journal of Math., 120:335–360, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Besser. Coleman integration using the Tannakian formalism. Math. Ann., 322(1):19–48, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Besser. p-adic Arakelov theory. J. Number Theory, 111(2):318–371, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Besser. On differential Tannakian categories and Coleman integration. Preprint, available online at http://www.math.bgu.ac.il/ bessera/difftan.pdf , 2011.

    Google Scholar 

  17. A. Besser and H. Furusho. The double shuffle relations for p-adic multiple zeta values. In Primes and knots, volume 416 of Contemp. Math., pages 9–29. Amer. Math. Soc., Providence, RI, 2006.

    Google Scholar 

  18. S. Bloch and K. Kato. L-functions and Tamagawa numbers of motives. In The Grothendieck Festschrift I, volume 86 of Prog. in Math., pages 333–400, Boston, 1990. Birkhäuser.

    Google Scholar 

  19. J. Balakrishnan, K. Kedlaya, and M. Kim. Appendix and erratum to “Massey products for elliptic curves of rank 1”. J. Amer. Math. Soc., 24(1):281–291, 2011.

    Article  MathSciNet  Google Scholar 

  20. N. Bourbaki. Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.

    Google Scholar 

  21. N. Bruin. Chabauty methods and covering techniques applied to generalized Fermat equations, volume 133 of CWI Tract. Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica, Amsterdam, 2002. Dissertation, University of Leiden, Leiden, 1999.

    Google Scholar 

  22. N. Bruin. Chabauty methods using elliptic curves. J. Reine Angew. Math., 562:27–49, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Coleman and E. de Shalit. p-adic regulators on curves and special values of p-adic L-functions. Invent. Math., 93(2):239–266, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Chabauty. Sur les points rationnels des courbes algébriques de genre supérieur à l’unité. C. R. Acad. Sci. Paris, 212:882–885, 1941.

    MathSciNet  Google Scholar 

  25. B. Chiarellotto. Weights in rigid cohomology applications to unipotent F-isocrystals. Ann. Sci. École Norm. Sup. (4), 31(5):683–715, 1998.

    Google Scholar 

  26. J. Coates and M. Kim. Selmer varieties for curves with CM Jacobians. Kyoto J. Math., 50(4):827–852, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  27. B. Chiarellotto and B. Le Stum. F-isocristaux unipotents. Compositio Math., 116(1):81–110, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Coleman. Dilogarithms, regulators, and p-adic L-functions. Invent. Math., 69:171–208, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Coleman. Effective Chabauty. Duke Math. J., 52(3):765–770, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Coleman. Torsion points on curves and p-adic abelian integrals. Annals of Math., 121:111–168, 1985.

    Article  MATH  Google Scholar 

  31. R. Coleman. Torsion points on Fermat curves. Compositio Math., 58(2):191–208, 1986.

    MATH  MathSciNet  Google Scholar 

  32. R. Coleman. Ramified torsion points on curves. Duke Math. J., 54(2):615–640, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. Coleman. p-adic integration. Notes from lectures at the University of Minnesota, 1989.

    Google Scholar 

  34. R. Coleman. Reciprocity laws on curves. Compositio Math., 72(2):205–235, 1989.

    MATH  MathSciNet  Google Scholar 

  35. R. Coleman. A p-adic Shimura isomorphism and p-adic periods of modular forms. Contemp. math., 165:21–51, 1994.

    Google Scholar 

  36. P. Colmez. Intégration sur les variétés p-adiques. Astérisque, (248):viii+155, 1998.

    Google Scholar 

  37. R. Crew. F-isocrystals and their monodromy groups. Ann. Sci. École Norm. Sup. (4), 25(4):429–464, 1992.

    Google Scholar 

  38. P. Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273–307, 1974.

    Google Scholar 

  39. P. Deligne. Le groupe fondamental de la droite projective moins trois points. In Galois groups over Q (Berkeley, CA, 1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 79–297. Springer, New York, 1989.

    Google Scholar 

  40. P. Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 111–195. Birkhäuser Boston, Boston, MA, 1990.

    Google Scholar 

  41. P. Deligne. Periods for the fundamental group. A short note on Arizona Winter School, 2002.

    Google Scholar 

  42. R. de Jeu. Zagier’s conjecture and wedge complexes in algebraic K-theory. Compositio Math., 96(2):197–247, 1995.

    MATH  MathSciNet  Google Scholar 

  43. P. Deligne and J. S. Milne. Tannakian categories. In Hodge cycles, motives, and Shimura varieties, volume 900 of Lect. Notes in Math., pages 101–228. Springer, 1982.

    Google Scholar 

  44. R. Elkik. Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4), 6:553–603 (1974), 1973.

    Google Scholar 

  45. H. Furusho and A. Jafari. Regularization and generalized double shuffle relations for p-adic multiple zeta values. Compos. Math., 143(5):1089–1107, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  46. E. V. Flynn. A flexible method for applying Chabauty’s theorem. Compositio Math., 105(1):79–94, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  47. H. Furusho. p-adic multiple zeta values. I. p-adic multiple polylogarithms and the p-adic KZ equation. Invent. Math., 155(2):253–286, 2004.

    Google Scholar 

  48. H. Furusho. p-adic multiple zeta values. II. Tannakian interpretations. Amer. J. Math., 129(4):1105–1144, 2007.

    Google Scholar 

  49. E. V. Flynn and J. L. Wetherell. Finding rational points on bielliptic genus 2 curves. Manuscripta Math., 100(4):519–533, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  50. E. V. Flynn and J. L. Wetherell. Covering collections and a challenge problem of Serre. Acta Arith., 98(2):197–205, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  51. E. Grosse-Klönne. Rigid analytic spaces with overconvergent structure sheaf. J. Reine Angew. Math., 519:73–95, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  52. U. Jannsen. Mixed motives and algebraic K-theory, volume 1400 of Lect. Notes in Math. Springer, Berlin Heidelberg New York, 1988.

    Google Scholar 

  53. M. Kamensky. Differential tensor categories. Unpublished lecture notes, 2009.

    Google Scholar 

  54. M. Kamensky. Model theory and the Tannakian formalism. Preprint, arXiv:math.LO/0908.0604v3, 2010.

    Google Scholar 

  55. N. M. Katz. p-adic interpolation of real analytic Eisenstein series. Ann. of Math. (2), 104(3):459–571, 1976.

    Google Scholar 

  56. M. Kim. The motivic fundamental group of 1 ∖ { 0, 1, } and the theorem of Siegel. Invent. Math., 161(3):629–656, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  57. M. Kim. The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci., 45(1):89–133, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  58. M. Kim. Massey products for elliptic curves of rank 1. J. Amer. Math. Soc., 23(3):725–747, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  59. M. Kim. p-adic L-functions and Selmer varieties associated to elliptic curves with complex multiplication. Ann. of Math. (2), 172(1):751–759, 2010.

    Google Scholar 

  60. N. M. Katz and W. Messing. Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math., 23:73–77, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  61. N. M. Katz and T. Oda. On the differentiation of de Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ., 8:199–213, 1968.

    MATH  MathSciNet  Google Scholar 

  62. A. G. B. Lauder. Homotopy methods for equations over finite fields. In Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 2003), volume 2643 of Lecture Notes in Comput. Sci., pages 18–23. Springer, Berlin, 2003.

    Google Scholar 

  63. A. G. B. Lauder. Counting solutions to equations in many variables over finite fields. Found. Comput. Math., 4(3):221–267, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  64. A. G. B. Lauder. Deformation theory and the computation of zeta functions. Proc. London Math. Soc. (3), 88(3):565–602, 2004.

    Google Scholar 

  65. R. Lercier and D. Lubicz. Counting points in elliptic curves over finite fields of small characteristic in quasi quadratic time. In Advances in cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Comput. Sci., pages 360–373. Springer, Berlin, 2003.

    Google Scholar 

  66. R. Lercier and D. Lubicz. A quasi quadratic time algorithm for hyperelliptic curve point counting. Ramanujan J., 12(3):399–423, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  67. P. Monsky and G. Washnitzer. Formal cohomology. I. Ann. of Math. (2), 88:181–217, 1968.

    Google Scholar 

  68. A. Ovchinnikov. Tannakian approach to linear differential algebraic groups. Transform. Groups, 13(2):413–446, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  69. A. Ovchinnikov. Differential Tannakian categories. J. Algebra, 321(10):3043–3062, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  70. A. Ovchinnikov. Tannakian categories, linear differential algebraic groups, and parametrized linear differential equations. Transform. Groups, 14(1):195–223, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  71. B. Perrin-Riou. Fonctions Lp-adiques des représentations p-adiques. Astérisque, (229):198pp, 1995.

    Google Scholar 

  72. P. Schneider. Basic notions of rigid analytic geometry. In Galois representations in arithmetic algebraic geometry (Durham, 1996), volume 254 of London Math. Soc. Lecture Note Ser., pages 369–378. Cambridge Univ. Press, Cambridge, 1998.

    Google Scholar 

  73. J.-P. Serre. Galois cohomology. Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author.

    Google Scholar 

  74. S. Siksek. Chabauty for symmetric powers of curves. Algebra Number Theory, 3(2):209–236, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  75. M. van der Put. The cohomology of Monsky and Washnitzer. Mém. Soc. Math. France (N.S.), 23:33–59, 1986. Introductions aux cohomologies p-adiques (Luminy, 1984).

    Google Scholar 

  76. J. L. Wetherell. Bounding the number of rational points on certain curves of high rank. ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–University of California, Berkeley.

    Google Scholar 

  77. J. Wildeshaus. Realizations of polylogarithms. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  78. Z. Wojtkowiak. Cosimplicial objects in algebraic geometry. In Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), volume 407 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 287–327. Kluwer Acad. Publ., Dordrecht, 1993.

    Google Scholar 

  79. Yu. G. Zarhin. p-adic abelian integrals and commutative Lie groups. J. Math. Sci., 81(3):2744–2750, 1996.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon Besser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Besser, A. (2012). Heidelberg Lectures on Coleman Integration. In: Stix, J. (eds) The Arithmetic of Fundamental Groups. Contributions in Mathematical and Computational Sciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23905-2_1

Download citation

Publish with us

Policies and ethics