Skip to main content

Unsteady Numerical Study of Wet Steam Flow in a Low Pressure Steam Turbine

  • Conference paper

Abstract

In steam power plants condensation already starts in the flow path of the low pressure part of the steam turbine, which leads to a complex three-dimensional two-phase flow. Wetness losses are caused due to thermodynamic and mechanical relaxation processes during condensation and droplet transport.

The present investigation focuses on the unsteady effects due to rotor-stator interaction on the droplet formation process. Results of unsteady three dimensional flow simulations of a two-stage steam turbine are presented, whereby this is the first time that non-equilibrium condensation is considered in such simulations. The numerical approach is based on RANS equations, which are extended by a wet steam specific nucleation and droplet growth model. Despite the use of a high performance cluster the unsteady simulation has a considerably high simulation time of approximately 60 days by use of 48 CPUs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, M.: Experimental assessment of droplet impact erosion of low-pressure steam turbine blades, Dissertation, Universität Stuttgart, 2009

    Google Scholar 

  2. Bakhtar, F.; Heaton, A. V.: Effects of Wake Chopping on Droplet Sizes in Steam Turbines, Proc. IMechE, Part C: J. Mech. Engrg. Science, 219(12):1357–1367, 2005

    Article  Google Scholar 

  3. Bakhtar, F.; Tochai, M. T. M.: An Investigation of Two-Dimensional Flows of Nucleating and Wet Steam by the Time-Marching Method, Int. J. Heat and Fluid Flow, 2(1):5–18, 1980

    Article  Google Scholar 

  4. Bakhtar, F.; Young, J. B.; White, A. J.; Simpson, D. A.: Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations, Proc. IMechE, Part C: J. Mech. Engrg. Science, 219(12):1315–1333, 2005

    Article  Google Scholar 

  5. Baumann, K.: Some Recent Developments in Large Steam Turbine Practice, J. Inst. Electr. Eng., 59(302):565–623, 1921

    Google Scholar 

  6. Freudenreich, J.: Einfluß der Dampfnässe auf Dampfturbinen, Zeitschrift des Vereines Deutscher Ingenieure, 71(20):664–667, May 1927

    Google Scholar 

  7. Gerber, A. G.: Two-Phase Eulerian/Lagrangian Model for Nucleating Steam Flow, Trans. ASME, J. Fluids Engrg., 124(2):465–475, 2002

    Article  MathSciNet  Google Scholar 

  8. Gerber, A. G.; Kermani, M. J.: A Pressure Based Eulerian-Eulerian Multi-Phase Model for Non-Equilibrium Condensation in Transonic Steam Flow, Int. J. Heat and Mass Transfer, 47:2217–2231, Aug. 2004

    Article  MATH  Google Scholar 

  9. Gerber, A. G.; Sigg, R.; Völker, L.; Casey, M. V.; Sürken, N.: Predictions of Nonequilibrium Phase Transition in a Model Low Pressure Steam Turbine, Proc. IMechE, Part A: J. Power and Energy, 221(6):825–835, 2007

    Article  Google Scholar 

  10. Gyarmathy, G.: Grundlagen einer Theorie der Naßdampfturbine, Dissertation, ETH Zürich, 1962

    Google Scholar 

  11. Gyarmathy, G.; Spengler, P.: Traupel-Festschrift Gewidmet zum 60. Geburstag von Walter Traupel, chap. Über die Strömungsfluktuationen in mehrstufigen thermischen Turbomaschinen, pp. 95–141, Juris-Verlag, Zürich, 1974

    Google Scholar 

  12. Heiler, M.: Instationäre Phänomene in Homogen/Heterogen Kondensierenden Düsen- und Turbinenstömungen, Ph.D. thesis, Universität Karlsruhe (TH), 1999

    Google Scholar 

  13. Kirillov, I. I.; Yablonik, R. M.: Fundamentals of the Theory of Turbines operating on Wet Steam, NASA Technical Translation, NASA TT F-611, Mashinostroyeniye Press, Leningrad, 1968

    Google Scholar 

  14. McCloskey, T. H.; Dooley, R. B.; McNaughton, W. P.: Turbine Steam Path Damage: Theory and Practice, Elec. Power Res. Inst., 1999

    Google Scholar 

  15. McDonald, J. E.: Homogeneous Nucleation of Vapor Condensation. I. Thermodynamic Aspects, Am. J. Phys., 30:870–877, Feb. 1962

    Article  Google Scholar 

  16. Moore, M. J.; Sieverding, C. H. (eds.): Two Phase Steam Flow in Turbines and Separators, von Karman Institute Book. Hemisphere Publishing Corporation, Washington, London, 1976

    Google Scholar 

  17. Nitsch, J.; Wenzel, B.: Langfristszenarien und Strategien für den Ausbau Erneuerbarer Energien in Deutschland, Leitszenario 2009, Studie des DLR im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Berlin, 2009

    Google Scholar 

  18. Starzmann, J.; Casey, M. V.; Sieverding, F.: Non-Equilibrium Condensation Effects on the Flow Field and the Performance of a Low Pressure Steam Turbine, in: Proceedings of ASME Turbo Expo, Glasgow, ASME, June 2010

    Google Scholar 

  19. Starzmann, J.; Schatz, M.; Casey, M. V.; Mayer, J. F.; Sieverding, F.: Modelling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine, in: Proceedings of ASME Turbo Expo, Vancouver, ASME, June 2011

    Google Scholar 

  20. Todd, K. W.; Hall, W. B.; Morris, W. D.; Ryley, D. J.: Symposium on wet steam, in: Proc. Instn. Mech. Engrs., London, 1966

    Google Scholar 

  21. VGB PowerTech: Zahlen und Fakten zur Stromerzeugung 2010, Sept. 2010, http://www.vgb.org/daten_stromerzeugung.html

    Google Scholar 

  22. Völker, L.: Neue Aspekte der aerodynamischen Gestaltung von Niederdruck-Endstufen-Beschaufelungen, Dissertation, Universität Stuttgart, 2006

    Google Scholar 

  23. Wróblewski, W.; Dykas, S.; Gardzilewicz, A.; Kolovratnik, M.: Numerical and Experimental Investigations of Steam Condensation in LP Part of a Large Power Turbine, Trans. ASME, J. Fluids Engrg., 131(4), 2009

    Google Scholar 

  24. Wróblewski, W.; Dykas, S.; Gepert, A.: Steam Condensing Flow Modeling in Turbine Channels, Int. J. Multiphase Flow, 35:498–506, March 2009

    Article  Google Scholar 

  25. Young, J. B.: The Spontaneous Condensation of Steam in Supersonic Nozzles, PhysicoChemical Hydrodynamics, 3(1):57–82, 1982

    Google Scholar 

  26. Young, J. B.: Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Nozzles and Turbine Cascades, Trans. ASME, J. Turbomachinery, 114:569–579, July 1992

    Article  Google Scholar 

  27. Young, J. B.: The Fundamental Equations of Gas-Droplet Multiphase Flow, Int. J. Multiphase Flow, 21(2):175–191, 1995

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Starzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Starzmann, J., Casey, M.V., Mayer, J.F. (2012). Unsteady Numerical Study of Wet Steam Flow in a Low Pressure Steam Turbine. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_32

Download citation

Publish with us

Policies and ethics