Skip to main content

Entropy and Metal-Insulator Transition in Atomic-Scale Wires: The Case of In-Si(111)(4×1)/(8×2)

  • Conference paper
  • 1972 Accesses

Abstract

Density functional theory (DFT) calculations are performed to determine the mechanism and origin of the intensively debated (4×1)–(8×2) phase transition of the Si(111)-In nanowire array. The calculations (i) show the existence of soft phonon modes that transform the nanowire structure between the metallic In zigzag chains of the room-temperature phase and the insulating In hexagons formed at low temperature and (ii) demonstrate that the subtle balance between the energy lowering due to the hexagon formation and the larger vibrational entropy of the zigzag chains causes the phase transition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T Tanikawa, I Matsuda, T Kanagawa, and S Hasegawa, Phys. Rev. Lett. 93, 016801 (2004).

    Article  Google Scholar 

  2. A A Stekolnikov, K Seino, F Bechstedt, S Wippermann, W G Schmidt, A Calzolari, and M Buongiorno Nardelli, Phys. Rev. Lett. 98, 026105 (2007).

    Article  Google Scholar 

  3. H W Yeom, S Takeda, E Rotenberg, I Matsuda, K Horikoshi, J Schaefer, C M Lee, S D Kevan, T Ohta, T Nagao, and S Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).

    Article  Google Scholar 

  4. C Gonzalez, F Flores, and J Ortega, Phys. Rev. Lett. 96, 136101 (2006).

    Article  Google Scholar 

  5. S Chandola, K Hinrichs, M Gensch, N Esser, S Wippermann, W G Schmidt, F Bechstedt, K Fleischer, and J F Mcgilp, Phys. Rev. Lett. 102, 226805 (2009).

    Article  Google Scholar 

  6. J R Ahn, J H Byun, H Koh, E Rotenberg, S D Kevan, and H W Yeom, Phys. Rev. Lett. 93, 106401 (2004).

    Article  Google Scholar 

  7. S Riikonen, A Ayuela, and D Sanchez-Portal, Surf. Sci. 600, 3821 (2006).

    Article  Google Scholar 

  8. C Kumpf, O Bunk, J H Zeysing, Y Su, M Nielsen, R L Johnson, R Feidenhans’l, and K Bechgaard, Phys. Rev. Lett. 85, 4916 (2000).

    Article  Google Scholar 

  9. J-H Cho, D-H Oh, K S Kim, and L Kleinman, Phys. Rev. B 64, 235302 (2001).

    Article  Google Scholar 

  10. J-H Cho, J-Y Lee, and L Kleinman, Phys. Rev. B 71, 081310(R) (2005).

    Google Scholar 

  11. X Lopez-Lozano, A Krivosheeva, A A Stekolnikov, L Meza-Montes, C Noguez, J Furthmüller, and F Bechstedt, Phys. Rev. B 73, 035430 (2006).

    Article  Google Scholar 

  12. G Lee, S-Y Yu, H Kim, and J-Y Koo, Phys. Rev. B 70, 121304(R) (2004).

    Google Scholar 

  13. C González, J Guo, J Ortega, F Flores, and H H Weitering, Phys. Rev. Lett. 102, 115501 (2009).

    Article  Google Scholar 

  14. H W Yeom, Phys. Rev. Lett. 97, 189701 (2006).

    Article  Google Scholar 

  15. Y. J Sun, S Agario, S Souma, K Sugawara, Y Tago, T Sato, and T Takahashi, Phys. Rev. B 77, 125115 (2008).

    Article  Google Scholar 

  16. K Fleischer, S Chandola, N Esser, W Richter, and J F McGilp, Phys. Rev. B 76, 205406 (2007).

    Article  Google Scholar 

  17. S Wippermann and W G Schmidt, Phys. Rev. Lett. 105, 126102 (2010).

    Article  Google Scholar 

  18. M Valtiner, M Todorova, G Grundmeier, and J Neugebauer, Phys. Rev. Lett. 103, 065502 (2009).

    Article  Google Scholar 

  19. G Kresse and J Furthmüller, Comp. Mat. Sci. 6, 15 (1996).

    Article  Google Scholar 

  20. J R Ahn, J H Byun, H Koh, E Rotenberg, S D Kevan, and H W Yeom, Phys. Rev. Lett. 93, 106401 (2004).

    Article  Google Scholar 

  21. C Gonzalez, J Ortega, and F Flores, New J. Phys. 7, 100 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, W.G. et al. (2012). Entropy and Metal-Insulator Transition in Atomic-Scale Wires: The Case of In-Si(111)(4×1)/(8×2). In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_11

Download citation

Publish with us

Policies and ethics