Skip to main content

Ab-initio Calculations of the Vibrational Properties of Nanostructures

  • Conference paper
Book cover High Performance Computing in Science and Engineering '11
  • 1972 Accesses

Abstract

We study, via ab initio density functional theory (DFT), the vibrational properties of semiconductor colloidal nanostructures. The calculations are performed on the NEC Nehalem clusters at the High Performance Computing Center Stuttgart (HLRS). We find a relatively large blue shift of the longitudinal acoustic, transverse and longitudinal optical modes with decreasing nanocrystal size. This blue shift originates from a bond length reduction at the surface of the clusters. We also find a red shift of the vibrational modes in the case of unpassivated nanostructures. This red shift can be attributed to the presence of unpaired electrons in the sp3 hybrid orbitals and the ensuing reduction in bond length. A subsequent structural relaxation leads to the formation of more favorable sp2 bonds and the vibrational modes shift to the blue. We can also identify the coherent acoustic modes and find good agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rogach, A. L., Eychmüller, A., Hickey, S. G., Kershaw, S. V.: Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536–557 (2007).

    Article  Google Scholar 

  2. Gaponik, N., Hickey, S. G., Dorfs, D., Rogach, A. L., Eychmüller, A.: Progress in the light emission of colloidal semiconductor nanocrystals. Small 6, 1364–1378 (2010).

    Article  Google Scholar 

  3. Talapin, D. V., Lee, J.-S., Kovalenko, M. V., Shevchenko, E. V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  Google Scholar 

  4. Fischer, J., Loss, D.: Hybridization and spin decoherence in heavy-hole quantum dots. Phys. Rev. Lett. 105, 266603 (4pp) (2010).

    Article  Google Scholar 

  5. Kilina, S. V., Kilin, D. S., Prezhdo, O. V.: Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time-domain Density Functional Theory of charge carrier relaxation. ACS Nano 3, 93–99 (2009).

    Article  Google Scholar 

  6. An, J. M., Califano, M., Franceschetti, A., Zunger, A.: Excited-state relaxation in PbSe quantum dots. J. Chem. Phys. 128, 164720 (7pp) (2008).

    Article  Google Scholar 

  7. Trallero-Giner, C., Comas, F., Marques, G. E., Tallman, R. E., Weinstein, B. A.: Optical phonons in spherical core/shell semiconductor nanoparticles: Effect of hydrostatic pressure. Phys. Rev. B 82, 205426 (14pp) (2010).

    Article  Google Scholar 

  8. Fu, H. X., Ozolins, V., Zunger, A.: Phonons in GaP quantum dots. Phys. Rev. B 59, 2881–2887 (1999).

    Article  Google Scholar 

  9. Baroni, S., de Gironcoli, S., Corso, A. D.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  Google Scholar 

  10. The CPMD consortium page, coordinated by Parrinello, M., and Andreoni, W., Copyright IBM Corp 1990–2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001 http://www.cpmd.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bester, G., Han, P. (2012). Ab-initio Calculations of the Vibrational Properties of Nanostructures. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_10

Download citation

Publish with us

Policies and ethics