Skip to main content

Regenerative Abilities in Modular Robots Using Virtual Embryogenesis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6943))

Abstract

One task in the field of modular robotics is to develop robotic organisms as fault-tolerant as possible. Even in case of damage of the robotic organism, the robotic units have to be able to autonomously repair the organism. We have adapted a technique called Virtual Embryogenesis (VE) to the problem of self organised assembly of a robotic organism, and tested the ability of the VE to regenerate damage of the organism. It showes, that due to randomly appearing events during the evolutionary process, that shapes the VE-process, the developed robotic organism has regenerative abilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  2. Carroll, S.B.: Endless forms: the evolution of gene regulation and morphological diversity. Cell 101(6), 577–580 (2000), http://view.ncbi.nlm.nih.gov/pubmed/10892643

    Article  Google Scholar 

  3. Crick, F.: Diffusion in embryogenesis. Nature 225(5231), 420–422 (1970), http://dx.doi.org/10.1038/225420a0

    Article  Google Scholar 

  4. Dauschan, M., Thenius, R., Schmickl, T., Crailsheim, K.: Using virtual embryogenesis multi-robot organisms. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS (LNAI), vol. 6943, pp. 227–237. Springer, Heidelberg (2011)

    Google Scholar 

  5. Ephrussi, A., Johnston, D.S.: Seeing is believing - the bicoid morphogen gradient matures. Cell 116(2), 143–152 (2004)

    Article  Google Scholar 

  6. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Biological Cybernetics 12(1), 30–39 (1972), http://dx.doi.org/10.1007/BF00289234

    MATH  Google Scholar 

  7. Hamann, H., Stradner, J., Schmickl, T., Crailsheim, K.: Artificial hormone reaction networks: Towards higher evolvability in evolutionary multi-modular robotics. In: Fellermann, H., Dörr, M., Hanczyc, M.M., Laursen, L.L., Maurer, S., Merkle, D., Monnard, P.A., Støy, K., Rasmussen, S. (eds.) Proc. of the ALife XII Conference, pp. 773–780. MIT Press, Cambridge (2010)

    Google Scholar 

  8. Hoffmann, M., Marques, H.G., Arieta, A.H., Sumioka, H., Lungarella, M., Pfeifer, R.: Body Schema in Robotics: A Review. IEEE Transactions on Autonomous Mental Development 2(4), 304–324 (2010)

    Article  Google Scholar 

  9. Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K.N., Manu, Myasnikova, E., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H., Reinitz, J.: Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371 (2004), http://dx.doi.org/10.1038/nature02678

    Article  Google Scholar 

  10. Meinhardt, H., Gierer, A.: Applications of a theory of biological pattern formation based on lateral inhibition. Journal of Cell Science 15(2), 321–346 (1974), http://view.ncbi.nlm.nih.gov/pubmed/4859215

    MATH  Google Scholar 

  11. Meinhardt, H., Gierer, A.: Pattern formation by local self-activation and lateral inhibition. Bioessays 22, 753–760 (2000)

    Article  Google Scholar 

  12. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: a New Distributed Robotic Concept. Autonomous Robots, special Issue on Swarm Robotics 17(2-3), 193–221 (2004)

    Article  Google Scholar 

  13. Müller, G.B.: Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics 8, 943–949 (2007)

    Article  Google Scholar 

  14. Müller, G.B., Newman, S.A.: The innovation triad: an evodevo agenda. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 304(6), 487–503 (2005), http://dx.doi.org/10.1002/jez.b.21081

    Article  Google Scholar 

  15. Newman, S.A., Müller, G.B.: Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 304(6), 593–609 (2005), http://dx.doi.org/10.1002/jez.b.21066

    Article  Google Scholar 

  16. REPLICATOR: Project website (2011), http://www.replicators.eu

  17. Rubenstein, M., Sai, Y., Choung, C.M., Shen, W.M.: Regenerative patterning in swarm robots: mutual benefits of research in robotics and stem cell biology. The International Journal of Developmental Biology 53, 869–881 (2009)

    Article  Google Scholar 

  18. Rubenstein, M., Shen, W.M.: Automatic scalable size selection for the shape of a distributed robotic collective. In: IROS (October 2010)

    Google Scholar 

  19. Schmickl, T., Hamann, H., Crailsheim, K.: Modelling a hormone-inspired controller for individual- and multi-modular robotic systems. Mathematical and Computer Modelling of Dynamical Systems 17(3), 221–242 (2011)

    Article  MATH  Google Scholar 

  20. Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode locomotion via SuperBot reconfigurable robots. Autonomous Robots 20(2), 165–177 (2006)

    Article  Google Scholar 

  21. Støy, K.: How to construct dense objects with self-reconfigurable robots. In: Christensen, H. (ed.) European Robotics Symposium 2006, Springer Tracts in Advanced Robotics 22, vol. 22, pp. 27–37. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. SYMBRION: Project website (2011), http://www.symbrion.eu

  23. Thenius, R., Bodi, M., Schmickl, T., Crailsheim, K.: Growth of structured artificial neural networks by virtual embryogenesis. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 118–125. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Thenius, R., Schmickl, T., Crailsheim, K.: Novel concept of modelling embryology for structuring an artificial neural network. In: Troch, I., Breitenecker, F. (eds.) Proceedings of the MATHMOD (2009)

    Google Scholar 

  25. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences B237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  26. Weatherbee, S.D., Carroll, S.B.: Selector genes and limb identity in arthropods and vertebrates. Cell 97(3), 283–286 (1999)

    Article  Google Scholar 

  27. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL (1999), http://ccl.northwestern.edu/netlogo/

  28. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology 25(1), 1–47 (1969)

    Article  Google Scholar 

  29. Wolpert, L.: One hundred years of positional information. Trends Genet. 12(9), 359–364 (1996), http://view.ncbi.nlm.nih.gov/pubmed/8855666

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thenius, R., Dauschan, M., Schmickl, T., Crailsheim, K. (2011). Regenerative Abilities in Modular Robots Using Virtual Embryogenesis. In: Bouchachia, A. (eds) Adaptive and Intelligent Systems. ICAIS 2011. Lecture Notes in Computer Science(), vol 6943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23857-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23857-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23856-7

  • Online ISBN: 978-3-642-23857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics