Skip to main content

A Scaling Limit Theorem for the Parabolic Anderson Model with Exponential Potential

  • Conference paper
  • First Online:
Probability in Complex Physical Systems

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 11))

Abstract

The parabolic Anderson problem is the Cauchy problem for the heat equation with random potential and localized initial condition. In this paper, we consider potentials which are constant in time and independent exponentially distributed in space. We study the growth rate of the total mass of the solution in terms of weak and almost sure limit theorems, and the spatial spread of the mass in terms of a scaling limit theorem. The latter result shows that in this case, just like in the case of heavy tailed potentials, the mass gets trapped in a single relevant island with high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biskup, M., König, W.: Eigenvalue order statistics for random Schrödinger operators with doubly exponential tails. In preparation (2010)

    Google Scholar 

  2. Caravenna, F.,  Carmona, P., Pétrélis, N.: The discrete-time parabolic Anderson model with heavy-tailed potential. Preprint arXiv:1012.4653v1[math.PR] (2010)

    Google Scholar 

  3. Gärtner, J., König, W.,  Molchanov, S.: Geometric characterisation of intermittency in the parabolic Anderson model. Ann. Probab. 35, 439–499 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gärtner, J., Molchanov, S.: Parabolic problems for the Anderson model. I. Intermittency and related topics. Commun. Math. Phys. 132, 613–655 (1990)

    Article  MATH  Google Scholar 

  5. Gärtner, J., Molchanov, S.: Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theory Relat. Fields 111, 17–55 (1998)

    Article  MATH  Google Scholar 

  6. van der Hofstad, R., König, W., Mörters, P.: The universality classes in the parabolic Anderson model. Commun. Math. Phys. 267, 307–353 (2006)

    Article  MATH  Google Scholar 

  7. van der Hofstad, R., Mörters, P., Sidorova, N.: Weak and almost sure limits for the parabolic Anderson model with heavy tailed potentials. Ann. Appl. Probab. 18, 2450–2494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. König, W., Lacoin, H., Mörters, P., Sidorova, N.: A two cities theorem for the parabolic Anderson model. Ann. Probab. 37, 347–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lacoin, H.: Calcul d’asymptotique et localization p.s. pour le modèle parabolique d’Anderson. Mémoire de Magistère, ENS, Paris (2007)

    Google Scholar 

  10. Mörters, P.: The parabolic Anderson model with heavy-tailed potential. In: Surveys in Stochastic Processes. Proceedings of the 33rd SPA Conference in Berlin, 2009. Edited by J. Blath, P. Imkeller, and S. Roelly. pp. 67–85. EMS Series of Congress Reports (2011)

    Google Scholar 

  11. Mörters, P., Ortgiese, M., Sidorova, N.: Ageing in the parabolic Anderson model. Annales de l’Institut Henri Poincaré: Probab. et Stat. 47, 969–1000 (2011)

    Article  Google Scholar 

  12. Mörters, P.: The parabolic Anderson model with heavy-tailed potential. To appear in: ‘Surveys in Stochastic Processes’. J. Blath et al. (eds.) EMS Conference Reports (2011)

    Google Scholar 

  13. Resnick, S.I.: Extreme values, regular variation, and point processes. Springer Series in OR and Financial Engineering. Springer, New York (1987)

    MATH  Google Scholar 

  14. Sznitman, A.-S.: Crossing velocities and random lattice animals. Ann. Probab. 23, 1006–1023 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sznitman, A.-S.: Fluctuations of principal eigenvalues and random scales. Commun. Math. Phys. 189, 337–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sznitman, A.-S.: Brownian motion, obstacles and random media. Springer, New York (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mörters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lacoin, H., Mörters, P. (2012). A Scaling Limit Theorem for the Parabolic Anderson Model with Exponential Potential. In: Deuschel, JD., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds) Probability in Complex Physical Systems. Springer Proceedings in Mathematics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23811-6_10

Download citation

Publish with us

Policies and ethics